Review of laser speckle contrast techniques for visualizing tissue perfusion

Matthijs Draijer, Erwin Hondebrink, Ton van Leeuwen, Wiendelt Steenbergen, Matthijs Draijer, Erwin Hondebrink, Ton van Leeuwen, Wiendelt Steenbergen

Abstract

When a diffuse object is illuminated with coherent laser light, the backscattered light will form an interference pattern on the detector. This pattern of bright and dark areas is called a speckle pattern. When there is movement in the object, the speckle pattern will change over time. Laser speckle contrast techniques use this change in speckle pattern to visualize tissue perfusion. We present and review the contribution of laser speckle contrast techniques to the field of perfusion visualization and discuss the development of the techniques.

Figures

Fig. 1
Fig. 1
a, b and c Simulated blurred speckle patterns with an exposure time of 1, 5, and 25 ms respectively, d, e, and f conjugated contrast images, with contrast values calculated for 5 x 5 pixels. The contrast value is shown in the colorbar
Fig. 2
Fig. 2
C as a function of T/τc for a Lorentzian velocity distribution (solid), Gaussian velocity distribution (dashed) and alternate Gaussian velocity distribution (dotted)
Fig. 3
Fig. 3
a LASCA-setup with essential features. b Schematic overview of the way the contrast is calculated in LASCA. With the squares being pixels of a recorded image, the contrast in pixel (i,j) (dark grey) is determined by calculating the ratio of the standard deviation of the pixels in the pale grey nxn pixel area to the mean value of the pixels in this area. c Schematic overview of the way the contrast is calculated in LSI. In pixel (i,j) the contrast is calculated as the ratio of the standard deviation of the intensity at this pixel at different times, and the mean intensity for this pixel and d schematic overview of the way the contrast is calculated in LSFG. The mean blur rate (MBR) is determined by calculating the ratio of the mean value of the pixels in the pale gray area to mean difference of the central point (dark gray) and the pixels in the pale gray area
Fig. 4
Fig. 4
LASCA contrast maps of the heart of a chicken embryo. a taken with an integration time of 15 ms and b taken with an integration time of 40 ms. The black arrows indicate the heart and the major feeding vessel
Fig. 5
Fig. 5
Comparison of three speckle contrast techniques discussed here with laser Doppler perfusion imaging. On the right hand of a volunteer a pattern was written with capsicum cream, a perfusion increasing cream, and imaged with the different techniques. a The inverse of the contrast determined with LASCA. b the inverse of the contrast determined with LSI. c MBR determined with LSFG and d the perfusion determined with LDPI. The contrast, MBR and perfusion values are shown in the colorbar

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OL.10.000104', 'is_inner': False, 'url': 'https://doi.org/10.1364/ol.10.000104'}, {'type': 'PubMed', 'value': '19724360', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/19724360/'}]}
    2. Fuji H, Asakura T, Nohira K, Shintomi Y, Ohura T (1985) Blood flow observed by time-varying laser speckle. Opt Lett 10:104–106
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2323896', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2323896/'}]}
    2. Ruth B (1990) Blood flow determination by the laser speckle method. Int J Microcirc Clin Exp 9:21–45
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1117/1.429879', 'is_inner': False, 'url': 'https://doi.org/10.1117/1.429879'}, {'type': 'PubMed', 'value': '23015076', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/23015076/'}]}
    2. Ulyanov SS (1998) Speckled speckle statistics with a small number of scatterers: implication for blood flow measurement. J Biomed Opt 3:237–245
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.39.006385', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.39.006385'}, {'type': 'PubMed', 'value': '18354651', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18354651/'}]}
    2. Ulyanov SS, Tuchin VV (2000) Use of low-coherence speckled speckles for bioflow measurements. Appl Opt 39:6385–6389
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/00004647-200103000-00002', 'is_inner': False, 'url': 'https://doi.org/10.1097/00004647-200103000-00002'}, {'type': 'PubMed', 'value': '11295873', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11295873/'}]}
    2. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0305-4179(02)00307-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0305-4179(02)00307-8'}, {'type': 'PubMed', 'value': '12706611', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12706611/'}]}
    2. Bray R, Forrester K, Leonard C, McArthur R, Tulip J, Lindsay R (2003) Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods. Burns 29:199–206
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.burns.2005.04.004', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.burns.2005.04.004'}, {'type': 'PubMed', 'value': '16129229', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16129229/'}]}
    2. Stewart CJ, Frank R, Forrester KR, Tulip J, Lindsay R, Bray RC (2005) A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns 31:744–752
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.burns.2005.11.014', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.burns.2005.11.014'}, {'type': 'PubMed', 'value': '16730128', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16730128/'}]}
    2. La Hei E, Holland A, Martin H (2006) Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination. Burns 32:550–553
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17343507', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17343507/'}]}
    2. de Mul FFM, Blaauw J, Aarnoudse JG, Smit AJ, Rakhorst G (2007) Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies. J Biomed Opt 12:14032–1
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.mla.2007.06.003', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.mla.2007.06.003'}]}
    2. Leahy MJ, Enfield JG, Clancy NT, O’Doherty J, McNamara P, Nilsson GE (2007) Biophotonic methods in microcirculation imaging. Med Laser Appl 22:105–126
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1109/10.222322', 'is_inner': False, 'url': 'https://doi.org/10.1109/10.222322'}, {'type': 'PubMed', 'value': '8375866', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8375866/'}]}
    2. Wårdell K, Jakobsson A, Nilsson GE (1993) Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40:309–316
    1. Webster S, Briers JD (1994) Time-integrated speckle for the examination of movement in biological systems. In: Cerullo LJ, Heiferman KS, Liu H, Podbielska H, Wist AO, Zamorano LJ (eds) Clinical applications of modern imaging technology II, vol 2132. Proc. SPIE, pp 444–452
    1. None
    2. Zhao H, Webb RH, Ortel B (2002) Review of noninvasive methods for skin blood flow imaging in microcirculation. J Clin Eng 27:40–47
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0030-3992(91)90085-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/0030-3992(91)90085-3'}]}
    2. Aizu Y, Asakura T (1991) Bio-speckle phenomena and their application to the evaluation of blood flow. Opt Laser Technol 23:205–219
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1088/0967-3334/22/4/201', 'is_inner': False, 'url': 'https://doi.org/10.1088/0967-3334/22/4/201'}, {'type': 'PubMed', 'value': '11761081', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11761081/'}]}
    2. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22:R35–R66
    1. None
    2. Briers JD (2007) Laser speckle contrast imaging for measuring blood flow. Opt Appl XXXVII:139–152
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/JOSAA.25.000009', 'is_inner': False, 'url': 'https://doi.org/10.1364/josaa.25.000009'}, {'type': 'PubMed', 'value': '18157206', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18157206/'}]}
    2. Duncan DD, Kirkpatrick SJ, Wang RK (2008) Statistics of local speckle contrast. J Opt Soc Am A, Opt Image Sci Vis 25:9–15
    1. None
    2. Goodman JW, Parry G (1984) Laser speckle and related phenomena. Springer, Berlin Heidelberg New York
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0030-4018(95)00042-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/0030-4018(95)00042-7'}]}
    2. Briers JD, Webster S (1995) Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt Commun 116:36–42
    1. Briers JD, Richards GJ (1997) Laser speckle contrast analysis (LASCA) for flow measurement. In: Gorecki C (ed) Optical inspection and micromeasurements II. Proc. SPIE, vol 3098, pp 211–221
    1. Richards G, Briers J (1997) Laser speckle contrast analysis (LASCA): a technique for measuring capillary blood flow using the first-order statistics of laser speckle patterns. In: IEE colloquium (Digest), vol 124. London, UK, pp 11–1
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.20.002097', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.20.002097'}, {'type': 'PubMed', 'value': '20332893', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/20332893/'}]}
    2. Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appl Opt 20:2097–2107
    1. Ramirez-San-Juan JC, Nelson JS, Choi B (2006) Comparison of Lorentzian and Guassian-based approaches for laser speckle imaging of blood flow dynamics. In: Tuchin VV, Izatt JA, Fujimoto JG (eds) Coherence domain optical methods and optical coherence tomography in biomedicine X. Proc. SPIE, vol 6079, pp 380–383
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0030-4018(81)90428-4', 'is_inner': False, 'url': 'https://doi.org/10.1016/0030-4018(81)90428-4'}]}
    2. Fercher AF, Briers JD (1981) Flow visualization by means of single-exposure speckle photography. Opt Commun 37:326–330
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OE.16.003197', 'is_inner': False, 'url': 'https://doi.org/10.1364/oe.16.003197'}, {'type': 'PMC', 'value': 'PMC3496760', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3496760/'}, {'type': 'PubMed', 'value': '18542407', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18542407/'}]}
    2. Ramirez-San-Juan JC, Ramos-Garcia R, Guizar-Iturbide I, Martinez-Niconoff G, Choi B (2008) Impact of velocity distribution assumption on simplified laser speckle imaging equation. Opt Express 16:3197–3203
    1. Duncan DD, Kirkpatrick SJ, Gladish JC (2008) What is the proper statistical model for laser speckle flowmetry? In: Tuchin VV, Wang LV (eds) Complex dynamics and fluctuations in biomedical photonics V. Proc. SPIE, vol 6855, pp 685502–685502–7
    1. None
    2. Archbold E, Ennos AE (1972) Displacement measurement from double-exposure laser photographs. Opt Acta 19:253–271
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.16.002334', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.16.002334'}, {'type': 'PubMed', 'value': '20168919', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/20168919/'}]}
    2. Grousson R, Mallick S (1977) Study of flow pattern in a fluid by scattered laser light. Appl Opt 16:2334–2336
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0030-4018(78)90135-9', 'is_inner': False, 'url': 'https://doi.org/10.1016/0030-4018(78)90135-9'}]}
    2. Iwata K, Hakoshima T, Nagata R (1978) Measurement of flow velocity distribution by multiple-exposure speckle photography. Opt Commun 25:311–314
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1143/JJAP.29.1099', 'is_inner': False, 'url': 'https://doi.org/10.1143/jjap.29.1099'}]}
    2. Iwai T, Shigeta K (1990) Experimental study on the spatial correlation properties of speckled speckles using digital speckle photography. Jpn J Appl Phys 29:1099–1102
    1. Ganilova Y, Li P, Zhu D, Lin N, Chen H, Luo Q, Ulyanov S (2006) Digital speckle-photography, LASCA and cross-correlation techniques for study of blood microflow in isolated vessel. In: Tuchin VV (ed) Saratov fall meeting 2005: optical technologies in biophysics and medicine VII. Proc. SPIE, vol 6163. SPIE, 616319
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1117/12.231359', 'is_inner': False, 'url': 'https://doi.org/10.1117/12.231359'}, {'type': 'PubMed', 'value': '23014683', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/23014683/'}]}
    2. Briers JD, Webster S (1996) Laser speckle contrast analysis LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J Biomed Opt 1:174–179
    1. Briers JD (2001) Time-varying laser speckle for measuring motion and flow. In: Zimnyakov DA (ed) Coherent optics of ordered and random media, vol 4242, pp 25–39
    1. He XW, Briers JD (1998) Laser speckle contrast analysis (LASCA): a real-time solution for monitoring capillary blood flow and velocity. In: Hoffman EA (ed) Physiology and function from multidimensional images. Proc. SPIE, vol 3337, pp 98–107
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1117/1.429903', 'is_inner': False, 'url': 'https://doi.org/10.1117/1.429903'}, {'type': 'PubMed', 'value': '23015182', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/23015182/'}]}
    2. Briers JD, Richards G, He XW (1999) Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J Biomed Opt 4:164–175
    1. Richards GJ, Briers JD (1997) Capillary-blood-flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range. In: Tuchin VV, Podbielska H, Ovryn B (eds) Coherence domain optical methods in biomedical science and clinical applications. Proc. SPIE, vol 2981, pp 160–171
    1. Briers JD, He XW (1998) Laser speckle contrast analysis (LASCA) for blood flow visualization: improved image processing. In: Priezzhev AV, Asakura T, Briers JD (eds) Optical diagnostics of biological fluids III. Proc. SPIE, vol 3252, pp 26–33
    1. Zimnyakov DA, Mishin AB, Bednov AA, Cheung C, Tuchin VV, Yodh AG (1999) Time-dependent speckle contrast measurements for blood microcirculation monitoring. In: Priezzhev AV, Asakura T (eds) Optical diagnostics of biological fluids IV. Proc. SPIE, vol 3599, pp 157–166
    1. Zimnyakov DA, Misnin AB (2001) Blood microcirculation monitoring by use of spatial filtering of time-integrated speckle patterns: potentialities to improve the depth resolution. In: Priezzhev AV, Cote GL (eds) Optical diagnostics and sensing of biological fluids and glucose and cholesterol monitoring. Proc. SPIE, vol 4263, pp 73–82
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevB.40.9342', 'is_inner': False, 'url': 'https://doi.org/10.1103/physrevb.40.9342'}, {'type': 'PubMed', 'value': '9991437', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9991437/'}]}
    2. MacKintosh FC, Zhu JX, Pine DJ, Weitz DA (1989) Polarization memory of multiply scattered light. Phys Rev B 40:9342–9345
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.44.001823', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.44.001823'}, {'type': 'PubMed', 'value': '15813518', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15813518/'}]}
    2. Yuan S, Devor A, Boas DA, Dunn AK (2005) Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl Opt 44:1823–1830
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1117/1.1578089', 'is_inner': False, 'url': 'https://doi.org/10.1117/1.1578089'}, {'type': 'PubMed', 'value': '12880364', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12880364/'}]}
    2. Cheng H, Luo Q, Zeng S, Chen S, Cen J, Gong H (2003) Modified laser speckle imaging method with improved spatial resolution. J Biomed Opt 8:559–564
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1117/1.2341196', 'is_inner': False, 'url': 'https://doi.org/10.1117/1.2341196'}, {'type': 'PubMed', 'value': '16965157', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16965157/'}]}
    2. Choi B, Ramirez-San-Juan JC, Lotfi J, Nelson JS (2006) Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics. J Biomed Opt 11:041129
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OPEX.13.010034', 'is_inner': False, 'url': 'https://doi.org/10.1364/opex.13.010034'}, {'type': 'PubMed', 'value': '19503214', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/19503214/'}]}
    2. Nothdurft R, Yao G (2005) Imaging obscured subsurface inhomogeneity using laser speckle. Opt Express 13:10034–10039
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OL.31.001824', 'is_inner': False, 'url': 'https://doi.org/10.1364/ol.31.001824'}, {'type': 'PubMed', 'value': '16729083', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16729083/'}]}
    2. Li P, Ni S, Zhang L, Zeng S, Luo Q (2006) Imaging cerebral blood flow trough the intact rat skull with temporal laser speckle imaging. Opt Lett 31:1824–1826
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OPEX.13.009782', 'is_inner': False, 'url': 'https://doi.org/10.1364/opex.13.009782'}, {'type': 'PubMed', 'value': '19503186', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/19503186/'}]}
    2. Völker AC, Zakharov P, Weber B, Buck F, Scheffold F (2005) Laser speckle imaging with an active noise reduction scheme. Opt Express 13:9782–9787
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1063/1.2037987', 'is_inner': False, 'url': 'https://doi.org/10.1063/1.2037987'}]}
    2. Bandyopadhyay R, Gittings AS, Suh SS, Dixon PK, Durian DJ (2005) Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev Sci Instrum 76:093110
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OL.31.003465', 'is_inner': False, 'url': 'https://doi.org/10.1364/ol.31.003465'}, {'type': 'PubMed', 'value': '17099751', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17099751/'}]}
    2. Zakharov P, Völker A, Buck A, Weber B, Scheffold F (2006) Quantitative modeling of laser speckle imaging. Opt Lett 31:3465–3467
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OL.32.002188', 'is_inner': False, 'url': 'https://doi.org/10.1364/ol.32.002188'}, {'type': 'PMC', 'value': 'PMC2894034', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2894034/'}, {'type': 'PubMed', 'value': '17671579', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17671579/'}]}
    2. Cheng H, Duong TQ (2007) Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. Opt Lett 32:2188–2190
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OE.16.001975', 'is_inner': False, 'url': 'https://doi.org/10.1364/oe.16.001975'}, {'type': 'PubMed', 'value': '18542277', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18542277/'}]}
    2. Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK (2008) Robust flow measurement with multi-exposure speckle imaging. Opt Express 16:1975–1989
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/JOSAA.13.000345', 'is_inner': False, 'url': 'https://doi.org/10.1364/josaa.13.000345'}]}
    2. Briers JD (1996) Laser Doppler and time-varying speckle: a reconciliation. J Opt Soc Am A 13:45–350
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF02345307', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf02345307'}, {'type': 'PubMed', 'value': '12507319', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12507319/'}]}
    2. Forrester KR, Stewart C, Tulip J, Leonard C, Bray RC (2002) Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue. Med Biol Eng Comput 40:687–697
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1109/TBME.2004.834259', 'is_inner': False, 'url': 'https://doi.org/10.1109/tbme.2004.834259'}, {'type': 'PubMed', 'value': '15536909', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15536909/'}]}
    2. Forrester KR, Tulip J, Leonard C, Bray RC, Robert C (2004) A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans Biomed Eng 51:2074–2084
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s10043-002-0163-4', 'is_inner': False, 'url': 'https://doi.org/10.1007/s10043-002-0163-4'}]}
    2. Konishi N, Tokimoto Y, Kohra K, Fujii H (2002) New laser speckle flowgraphy system using CCD camera. Opt Rev 9:163–196
    1. Tan YK, Liu WZ, Yew YS, Ong SH, Paul JS (2004) Speckle image analysis of cortical blood flow and perfusion using temporally derived contrasts. In: International conference on image processing ICIP 2004. Proc. IEEE, vol 5, pp 3323–3326
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '17679334', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17679334/'}]}
    2. Le TM, Paul JS, Al-Nashash H, Tan A, Luft AR, Sheu FS, Ong SH (2007) New insights into image processing of cortical blood flow monitors using laser speckle imaging. IEEE Trans Biomed Eng 26:833–842
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0030-4018(95)00181-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/0030-4018(95)00181-7'}]}
    2. DaCosta G (1995) Optical remote sensing of heartbeats. Opt Commun 117:395–398
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.35.005727', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.35.005727'}, {'type': 'PubMed', 'value': '21127582', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/21127582/'}]}
    2. Sadhwani A, Schomacker KT, Tearney GJ, Nishioka NS (1996) Determination of teflon thickness with laser speckle. i. potential for burn depth diagnosis. Appl Opt 35:5727–5735
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s101030200024', 'is_inner': False, 'url': 'https://doi.org/10.1007/s101030200024'}, {'type': 'PubMed', 'value': '12181629', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12181629/'}]}
    2. Kubota J (2002) Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci 17:146–153
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.mvr.2004.04.003', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.mvr.2004.04.003'}, {'type': 'PubMed', 'value': '15313124', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15313124/'}]}
    2. Choi B, Kang NM, Nelson JS (2004) Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc Res 68:143–146
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.neuroimage.2005.07.019', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.neuroimage.2005.07.019'}, {'type': 'PubMed', 'value': '16150612', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16150612/'}]}
    2. Paul JS, Luft AR, Yew E, Sheu FS (2006) Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using laser speckle contrast analysis (LASCA). Neuroimage 29:38–45
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s10103-006-0399-5', 'is_inner': False, 'url': 'https://doi.org/10.1007/s10103-006-0399-5'}, {'type': 'PubMed', 'value': '17039262', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17039262/'}]}
    2. Kruijt B, de Bruijn HS, van der Ploeg-van den Heuvel A, Sterenborg HJCM, Robinson DJ (2006) Laser speckle imaging of dynamic changes in flow during photodynamic therapy. Lasers Med Sci 21:208–212
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/lsm.20335', 'is_inner': False, 'url': 'https://doi.org/10.1002/lsm.20335'}, {'type': 'PubMed', 'value': '16615132', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16615132/'}]}
    2. Smith TK, Choi B, Ramirez-San-Juan JC, Nelson JS, Osann K, Kelly KM (2006) Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Lasers Surg Med 38:532–539
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.46.001911', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.46.001911'}, {'type': 'PubMed', 'value': '17356637', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17356637/'}]}
    2. Zhu D, Lu W, Weng Y, Cui H, Luo Q (2007) Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging. Appl Opt 46:1911–1917
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/AO.46.005340', 'is_inner': False, 'url': 'https://doi.org/10.1364/ao.46.005340'}, {'type': 'PubMed', 'value': '17676149', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17676149/'}]}
    2. Murari K, Li N, Rege A, Jia X, All A, Thakor N (2007) Contrast-enhanced imaging of cerebral vasculature with laser speckle. Appl Opt 46:5340–5346
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/CIRCULATIONAHA.104.520098', 'is_inner': False, 'url': 'https://doi.org/10.1161/circulationaha.104.520098'}, {'type': 'PMC', 'value': 'PMC2957879', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2957879/'}, {'type': 'PubMed', 'value': '16061738', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16061738/'}]}
    2. Nadkarni SK, Bouma BE, Helg T, Chan R, Halpern E, Chau A, Minsky MS, Motz JT, Houser SL, Tearney GJ (2005) Characterization of atheroslerotic plaques by laser speckle imaging. Circulation 112:885–892
    1. Nadkarni SK, Bouma BE, de Boer J, Tearney GJ (2008) Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Lasers Med Sci doi:
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OL.27.000300', 'is_inner': False, 'url': 'https://doi.org/10.1364/ol.27.000300'}, {'type': 'PubMed', 'value': '18007783', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/18007783/'}]}
    2. Serov A, Steenbergen W, de Mul FFM (2002) Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor. Opt Lett 27:300–302
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OPEX.13.003681', 'is_inner': False, 'url': 'https://doi.org/10.1364/opex.13.003681'}, {'type': 'PubMed', 'value': '19495275', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/19495275/'}]}
    2. Serov A, Steinacher B, Lasser T (2005) Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. Opt Express 13:3681–3689
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1364/OPEX.13.006416', 'is_inner': False, 'url': 'https://doi.org/10.1364/opex.13.006416'}, {'type': 'PubMed', 'value': '19498655', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/19498655/'}]}
    2. Serov A, Lasser T (2005) High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor. Opt Express 13:6416–6428
    1. Serov A, Lasser T (2006) Combined laser Doppler and laser speckle imaging for real-time blood flow measurements. In: Coté GL, Priezzhev AV (eds) Optical diagnostics and sensing VI. Proc. SPIE, vol 6094, pp 33–40
    1. Draijer MJ, Hondebrink E, van Leeuwen TG, Steenbergen W (2008) Connecting laser Doppler perfusion imaging and laser speckle contrast analysis. In: Coté GL, Priezzhev AV (eds) Optical diagnostics and sensing VIII. Proc. SPIE, vol 6863, pp 68630C–68630C–8
    1. Thompson OB, Andrews MK (2008) Spectral density and tissue perfusion from speckle contrast measurements. In: Izatt JA, Fujimoto JG, Tuchin VV (eds) Coherence domain optical methods and optical coherence tomography in biomedicine XII. Proc. SPIE, vol 6847, pp 68472D–68472D–7

Source: PubMed

3
Abonnere