Pathophysiology of X-linked adrenoleukodystrophy

J Berger, S Forss-Petter, F S Eichler, J Berger, S Forss-Petter, F S Eichler

Abstract

Currently the molecular basis for the clinical heterogeneity of X-linked adrenoleukodystrophy (X-ALD) is poorly understood. The genetic bases for all different phenotypic variants of X-ALD are mutations in the gene encoding the peroxisomal ATP-binding cassette (ABC) transporter, ABCD1 (formerly adrenoleukodystrophy protein, ALDP). ABCD1 transports CoA-activated very long-chain fatty acids from the cytosol into the peroxisome for degradation. The phenotypic variability is remarkable ranging from cerebral inflammatory demyelination of childhood onset, leading to death within a few years, to adults remaining pre-symptomatic through more than five decades. There is no general genotype-phenotype correlation in X-ALD. The default manifestation of mutations in ABCD1 is adrenomyeloneuropathy, a slowly progressive dying-back axonopathy affecting both ascending and descending spinal cord tracts as well as in some cases, a peripheral neuropathy. In about 60% of male X-ALD patients, either in childhood (35-40%) or in adulthood (20%), an initial, clinically silent, myelin destabilization results in conversion to a devastating, rapidly progressive form of cerebral inflammatory demyelination. Here, ABCD1 remains a susceptibility gene, necessary but not sufficient for inflammatory demyelination to occur. Although the accumulation of very long-chain fatty acids appears to be essential for the pathomechanism of all phenotypes, the molecular mechanisms underlying these phenotypes are fundamentally different. Cell autonomous processes such as oxidative stress and energy shortage in axons as well as non-cell autonomous processes involving axon-glial interactions seem pertinent to the dying-back axonopathy. Various dynamic mechanisms may underlie the initiation of inflammation, the altered immune reactivity, the propagation of inflammation, as well as the mechanisms leading to the arrest of inflammation after hematopoietic stem cell transplantation. An improved understanding of the molecular mechanisms involved in these events is required for the development of urgently needed therapeutics.

Keywords: ABC transporter; Axonopathy; Demyelination; Inflammation; Leukodystrophy; Peroxisome.

Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Figures

Fig. 1
Fig. 1
Hypothetical model and pathology of AMN; (A) Model showing the sequential events leading to the dying-back axonopathy, the main clinical manifestation of AMN. (B) Quantitative magnetization transfer characteristics of the human cervical spinal cord in a severely affected patient with AMN. The arrows indicate the signal hyperintensity in the dorsal and lateral columns (Image was provided by Dr. Ali Fatemi, Department of Neurogenetics, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, USA). (C) Anti-phosphorylated neurofilament immunostaining of the cervical spinal cord of an AMN patients showing atrophy of the lateral columns (arrows; reproduced with permission from J. Neuropathol. Exp. Neurol.; Powers et al., 2000; 59:89–101). (D) T2-weighted magnetic resonance image of the brain in an AMN patient. The arrows indicate the symmetric lesions in the corticospinal tract.
Fig. 2
Fig. 2
Hypothetical model showing the sequential events leading to the inflammatory demyelination in CALD. The inset images are characteristic MRI features of a boy afflicted by CALD. The left panel shows a T2-weighted image with a symmetric and confluent demyelinating lesion within the parieto-occipital lobes. The right panel shows a T1-weighted image post gadolinium administration. Gadolinium enhancement indicates active inflammation and disruption of the blood brain barrier.

References

    1. Bezman L., Moser H.W. Incidence of X-linked adrenoleukodystrophy and the relative frequency of its phenotypes. Am. J. Med. Genet. 1998;76:415–419.
    1. Kemp S., Berger J., Aubourg P. X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim. Biophys. Acta. 2012;1822:1465–1474.
    1. Moser H.W., Smith K.D., Watkins P.A., Powers J., Moser A.B. X-linked Adrenoleukodystrophy. In: Scriver R., Beaudet A.L., Sly W.S., Valle D., editors. The Metabolic & Molecular Bases of Inherited Disease. eighth ed. McGraw-Hill Book Co.; New York: 2001. pp. 3257–3301.
    1. Peters C., Charnas L.R., Tan Y., Ziegler R.S., Shapiro E.G., DeFor T., Grewal S.S., Orchard P.J., Abel S.L., Goldman A.I., Ramsay N.K., Dusenbery K.E., Loes D.J., Lockman L.A., Kato S., Aubourg P.R., Moser H.W., Krivit W. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood. 2004;104:881–888.
    1. Cartier N., Hacein-Bey-Abina S., Bartholomae C.C., Veres G., Schmidt M., Kutschera I., Vidaud M., Abel U., Dal-Cortivo L., Caccavelli L., Mahlaoui N., Kiermer V., Mittelstaedt D., Bellesme C., Lahlou N., Lefrere F., Blanche S., Audit M., Payen E., Leboulch P., l'Homme B., Bougneres P., Von Kalle C., Fischer A., Cavazzana-Calvo M., Aubourg P. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–823.
    1. Cartier N., Aubourg P. Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:857–862.
    1. Hershkovitz E., Narkis G., Shorer Z., Moser A.B., Watkins P.A., Moser H.W., Manor E. Cerebral X-linked adrenoleukodystrophy in a girl with Xq27-Ter deletion. Ann. Neurol. 2002;52:234–237.
    1. Moser H.W., Mahmood A., Raymond G.V. X-linked adrenoleukodystrophy. Nat. Clin. Pract. Neurol. 2007;3:140–151.
    1. Maier E.M., Kammerer S., Muntau A.C., Wichers M., Braun A., Roscher A.A. Symptoms in carriers of adrenoleukodystrophy relate to skewed X inactivation. Ann. Neurol. 2002;52:683–688.
    1. Thibert R., Hyland K., Chiles J., Steinberg S., Eichler F. Levodopa response reveals sepiapterin reductase deficiency in a female heterozygote with adrenoleukodystrophy. JIMD Rep. 2012;3:79–82.
    1. Mosser J., Douar A.M., Sarde C.O., Kioschis P., Feil R., Moser H., Poustka A.M., Mandel J.L., Aubourg P. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 1993;361:726–730.
    1. Kemp S., Pujol A., Waterham H.R., van Geel B.M., Boehm C.D., Raymond G.V., Cutting G.R., Wanders R.J., Moser H.W. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum. Mutat. 2001;18:499–515.
    1. van Roermund C.W., Visser W.F., Ijlst L., Waterham H.R., Wanders R.J. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim. Biophys. Acta. 2011;1811:148–152.
    1. van Roermund C.W., Visser W.F., Ijlst L., van Cruchten A., Boek M., Kulik W., Waterham H.R., Wanders R.J. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J. 2008;22:4201–4208.
    1. Wiesinger C., Kunze M., Regelsberger G., Forss-Petter S., Berger J. Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J. Biol. Chem. 2013;288:19269–19279.
    1. Kamijo K., Taketani S., Yokota S., Osumi T., Hashimoto T. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J. Biol. Chem. 1990;265:4534–4540.
    1. Lombard-Platet G., Savary S., Sarde C.O., Mandel J.L., Chimini G. A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc. Natl. Acad. Sci. U. S. A. 1996;93:1265–1269.
    1. Holzinger A., Kammerer S., Berger J., Roscher A.A. cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem. Biophys. Res. Commun. 1997;239:261–264.
    1. Berger J., Gartner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim. Biophys. Acta. 2006;1763:1721–1732.
    1. Berger J., Molzer B., Fae I., Bernheimer H. X-linked adrenoleukodystrophy (ALD): a novel mutation of the ALD gene in 6 members of a family presenting with 5 different phenotypes. Biochem. Biophys. Res. Commun. 1994;205:1638–1643.
    1. Smith K.D., Kemp S., Braiterman L.T., Lu J.F., Wei H.M., Geraghty M., Stetten G., Bergin J.S., Pevsner J., Watkins P.A. X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem. Res. 1999;24:521–535.
    1. Guimaraes C.P., Lemos M., Menezes I., Coelho T., Sa-Miranda C., Azevedo J.E. Characterisation of two mutations in the ABCD1 gene leading to low levels of normal ALDP. Hum. Genet. 2001;109:616–622.
    1. O'Neill G.N., Aoki M., Brown R.H., Jr. ABCD1 translation-initiator mutation demonstrates genotype-phenotype correlation for AMN. Neurology. 2001;57:1956–1962.
    1. Kemp S., Valianpour F., Denis S., Ofman R., Sanders R.J., Mooyer P., Barth P.G., Wanders R.J. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol. Genet. Metab. 2005;84:144–151.
    1. Theda C., Moser A.B., Powers J.M., Moser H.W. Phospholipids in X-linked adrenoleukodystrophy white matter: fatty acid abnormalities before the onset of demyelination. J. Eurol. Sci. 1992;110:195–204.
    1. Sharp P., Johnson D., Poulos A. Molecular species of phosphatidylcholine containing very long chain fatty acids in human brain: enrichment in X-linked adrenoleukodystrophy brain and diseases of peroxisome biogenesis brain. J. Neurochem. 1991;56:30–37.
    1. Khan M., Pahan K., Singh A.K., Singh I. Cytokine-induced accumulation of very long-chain fatty acids in rat C6 glial cells: implication for X-adrenoleukodystrophy. J. Neurochem. 1998;71:78–87.
    1. Schaumburg H.H., Powers J.M., Suzuki K., Raine C.S. Adreno-leukodystrophy (sex-linked Schilder disease). Ultrastructural demonstration of specific cytoplasmic inclusions in the central nervous system. Arch. Neurol. 1974;31:210–213.
    1. Eichler F.S., Ren J.Q., Cossoy M., Rietsch A.M., Nagpal S., Moser A.B., Frosch M.P., Ransohoff R.M. Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann. Neurol. 2008;63:729–742.
    1. Hubbard W.C., Moser A.B., Liu A.C., Jones R.O., Steinberg S.J., Lorey F., Panny S.R., Vogt R.F., Jr., Macaya D., Turgeon C.T., Tortorelli S., Raymond G.V. Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. Mol. Genet. Metab. 2009;97:212–220.
    1. Fouquet F., Zhou J.M., Ralston E., Murray K., Troalen F., Magal E., Robain O., Dubois-Dalcq M., Aubourg P. Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol. Dis. 1997;3:271–285.
    1. Hoftberger R., Kunze M., Weinhofer I., Aboul-Enein F., Voigtlander T., Oezen I., Amann G., Bernheimer H., Budka H., Berger J. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: implications for X-linked adrenoleukodystrophy. Neurobiol. Dis. 2007;28:165–174.
    1. Hoftberger R., Kunze M., Voigtlander T., Unterberger U., Regelsberger G., Bauer J., Aboul-Enein F., Garzuly F., Forss-Petter S., Bernheimer H., Berger J., Budka H. Peroxisomal localization of the proopiomelanocortin-derived peptides beta-lipotropin and beta-endorphin. Endocrinology. 2010;151:4801–4810.
    1. Troffer-Charlier N., Doerflinger N., Metzger E., Fouquet F., Mandel J.L., Aubourg P. Mirror expression of adrenoleukodystrophy and adrenoleukodystrophy related genes in mouse tissues and human cell lines. Eur. J. Cell Biol. 1998;75:254–264.
    1. Berger J., Albet S., Bentejac M., Netik A., Holzinger A., Roscher A.A., Bugaut M., Forss-Petter S. The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur. J. Biochem. 1999;265:719–727.
    1. Netik A., Forss-Petter S., Holzinger A., Molzer B., Unterrainer G., Berger J. Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum. Mol. Genet. 1999;8:907–913.
    1. Kemp S., Wei H.M., Lu J.F., Braiterman L.T., McGuinness M.C., Moser A.B., Watkins P.A., Smith K.D. Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat. Med. 1998;4:1261–1268.
    1. Forss-Petter S., Werner H., Berger J., Lassmann H., Molzer B., Schwab M.H., Bernheimer H., Zimmermann F., Nave K.A. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J. Neurosci. Res. 1997;50:829–843.
    1. Lu J.F., Lawler A.M., Watkins P.A., Powers J.M., Moser A.B., Moser H.W., Smith K.D. A mouse model for X-linked adrenoleukodystrophy. Proc. Natl. Acad. Sci. U. S. A. 1997;94:9366–9371.
    1. Kobayashi T., Shinnoh N., Kondo A., Yamada T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem. Biophys. Res. Commun. 1997;232:631–636.
    1. Oezen I., Rossmanith W., Forss-Petter S., Kemp S., Voigtlander T., Moser-Thier K., Wanders R.J., Bittner R.E., Berger J. Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency. Hum. Mol. Genet. 2005;14:1127–1137.
    1. Pujol A., Hindelang C., Callizot N., Bartsch U., Schachner M., Mandel J.L. Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum. Mol. Genet. 2002;11:499–505.
    1. Dumser M., Bauer J., Lassmann H., Berger J., Forss-Petter S. Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency. Acta Neuropathol. 2007;114:573–586.
    1. Lu J.F., Barron-Casella E., Deering R., Heinzer A.K., Moser A.B., deMesy K.L., Bentley G.S., Wand C.M.M., Pei Z., Watkins P.A., Pujol A., Smith K.D., Powers J.M. The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage. Lab. Invest. 2007;87:261–272.
    1. Pujol A., Ferrer I., Camps C., Metzger E., Hindelang C., Callizot N., Ruiz M., Pampols T., Giros M., Mandel J.L. Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum. Mol. Genet. 2004;13:2997–3006.
    1. Maier E.M., Mayerhofer P.U., Asheuer M., Kohler W., Rothe M., Muntau A.C., Roscher A.A., Holzinger A., Aubourg P., Berger J. X-linked adrenoleukodystrophy phenotype is independent of ABCD2 genotype. Biochem. Biophys. Res. Commun. 2008;377:176–180.
    1. Matsukawa T., Asheuer M., Takahashi Y., Goto J., Suzuki Y., Shimozawa N., Takano H., Onodera O., Nishizawa M., Aubourg P., Tsuji S. Identification of novel SNPs of ABCD1, ABCD2, ABCD3, and ABCD4 genes in patients with X-linked adrenoleukodystrophy (ALD) based on comprehensive resequencing and association studies with ALD phenotypes. Neurogenetics. 2011;12:41–50.
    1. Powers J.M., DeCiero D.P., Ito M., Moser A.B., Moser H.W. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J. Neuropathol. Exp. Neurol. 2000;59:89–102.
    1. Powers J.M., DeCiero D.P., Cox C., Richfield E.K., Ito M., Moser A.B., Moser H.W. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J. Neuropathol. Exp. Neurol. 2001;60:493–501.
    1. Moser H.W., Moser A.B., Smith K.D., Bergin A., Borel J., Shankroff J., Stine O.C., Merette C., Ott J., Krivit W. Adrenoleukodystrophy: phenotypic variability and implications for therapy. J. Inherit. Metab. Dis. 1992;15:645–664.
    1. Powers J.M. Adreno-leukodystrophy: a personal historical note. Acta Neuropathol. 2005;109:124–127.
    1. Lopez-Erauskin J., Galino J., Ruiz M., Cuezva J.M., Fabregat I., Cacabelos D., Boada J., Martinez J., Ferrer I., Pamplona R., Villarroya F., Portero-Otin M., Fourcade S., Pujol A. Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum. Mol. Genet. 2013;22:3296–3305.
    1. Fourcade S., Lopez-Erauskin J., Galino J., Duval C., Naudi A., Jove M., Kemp S., Villarroya F., Ferrer I., Pamplona R., Portero-Otin M., Pujol A. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum. Mol. Genet. 2008;17:1762–1773.
    1. Lopez-Erauskin J., Fourcade S., Galino J., Ruiz M., Schluter A., Naudi A., Jove M., Portero-Otin M., Pamplona R., Ferrer I., Pujol A. Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann. Neurol. 2011;70:84–92.
    1. Galea E., Launay N., Portero-Otin M., Ruiz M., Pamplona R., Aubourg P., Ferrer I., Pujol A. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim. Biophys. Acta. 2012;1822:1475–1488.
    1. Vargas C.R., Wajner M., Sirtori L.R., Goulart L., Chiochetta M., Coelho D., Latini A., Llesuy S., Bello-Klein A., Giugliani R., Deon M., Mello C.F. Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim. Biophys. Acta. 2004;1688:26–32.
    1. Petrillo S., Piemonte F., Pastore A., Tozzi G., Aiello C., Pujol A., Cappa M., Bertini E. Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Mol. Genet. Metab. 2013;109:366–370.
    1. Hein S., Schonfeld P., Kahlert S., Reiser G. Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum. Mol. Genet. 2008;17:1750–1761.
    1. Bottelbergs A., Verheijden S., Hulshagen L., Gutmann D.H., Goebbels S., Nave K.A., Kassmann C., Baes M. Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia. 2010;58:1532–1543.
    1. Kassmann C.M., Lappe-Siefke C., Baes M., Brugger B., Mildner A., Werner H.B., Natt O., Michaelis T., Prinz M., Frahm J., Nave K.A. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet. 2007;39:969–976.
    1. Kassmann C.M., Nave K.A. Oligodendroglial impact on axonal function and survival – a hypothesis. Curr. Opin. Neurol. 2008;21:235–241.
    1. Kassmann C.M., Quintes S., Rietdorf J., Mobius W., Sereda M.W., Nientiedt T., Saher G., Baes M., Nave K.A. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Lett. 2011;585:2205–2211.
    1. Fatemi A., Smith S.A., Dubey P., Zackowski K.M., Bastian A.J., van Zijl P.C., Moser H.W., Raymond G.V., Golay X. Magnetization transfer MRI demonstrates spinal cord abnormalities in adrenomyeloneuropathy. Neurology. 2005;64:1739–1745.
    1. Ho J.K., Moser H., Kishimoto Y., Hamilton J.A. Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J. Clin. Invest. 1995;96:1455–1463.
    1. Asheuer M., Bieche I., Laurendeau I., Moser A., Hainque B., Vidaud M., Aubourg P. Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. Hum. Mol. Genet. 2005;14:1293–1303.
    1. Jang J., Kang H.C., Kim H.S., Kim J.Y., Huh Y.J., Kim D.S., Yoo J.E., Lee J.A., Lim B., Lee J., Yoon T.M., Park I.H., Hwang D.Y., Daley G.Q., Kim D.W. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann. Neurol. 2011;70:402–409.
    1. Schaumburg H.H., Powers J.M., Raine C.S., Suzuki K., Richardson E.P., Jr. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch. Neurol. 1975;32:577–591.
    1. Powers J.M., Liu Y., Moser A.B., Moser H.W. The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J. Neuropathol. Exp. Neurol. 1992;51:630–643.
    1. Maestri N.E., Beaty T.H. Predictions of a 2-locus model for disease heterogeneity: application to adrenoleukodystrophy. Am. J. Med. Genet. 1992;44:576–582.
    1. Smith K.D., Sack G., Beaty T., Bergin A., Naidu S., Moser A., Moser H. A genetic-basis for the multiple phenotypes of X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 1991;49 165–165.
    1. Ofman R., Dijkstra I.M., van Roermund C.W., Burger N., Turkenburg M., van Cruchten A., van Engen C.E., Wanders R.J., Kemp S. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol. Med. 2010;2:90–97.
    1. Kemp S., Wanders R. Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:831–837.
    1. Korenke G.C., Pouwels P.J., Frahm J., Hunneman D.H., Stoeckler S., Krasemann E., Jost W., Hanefeld F. Arrested cerebral adrenoleukodystrophy: a clinical and proton magnetic resonance spectroscopy study in three patients. Pediatr. Neurol. 1996;15:103–107.
    1. Musolino P.L., Rapalino O., Caruso P., Caviness V.S., Eichler F.S. Hypoperfusion predicts lesion progression in cerebral X-linked adrenoleukodystrophy. Brain. 2012;135:2676–2683.
    1. Putnam T.J., Wilcox H.B. A reducing substance found in chromophilic adenomas and in the normal anterior pituitary. Am. J. Pathol. 1933;9:649–650.
    1. Arnold A.C., Pepose J.S., Hepler R.S., Foos R.Y. Retinal periphlebitis and retinitis in multiple sclerosis. I. Pathologic characteristics. Ophthalmology. 1984;91:255–262.
    1. Lightman S., McDonald W.I., Bird A.C., Francis D.A., Hoskins A., Batchelor J.R., Halliday A.M. Retinal venous sheathing in optic neuritis. Its significance for the pathogenesis of multiple sclerosis. Brain. 1987;110:405–414.
    1. Lund T.C., Stadem P.S., Panoskaltsis-Mortari A., Raymond G., Miller W.P., Tolar J., Orchard P.J. Elevated cerebral spinal fluid cytokine levels in boys with cerebral adrenoleukodystrophy correlates with MRI severity. PLoS One. 2012;7:e32218.
    1. Ito M., Blumberg B.M., Mock D.J., Goodman A.D., Moser A.B., Moser H.W., Smith K.D., Powers J.M. Potential environmental and host participants in the early white matter lesion of adreno-leukodystrophy: morphologic evidence for CD8 cytotoxic T cells, cytolysis of oligodendrocytes, and CD1-mediated lipid antigen presentation. J. Neuropathol. Exp. Neurol. 2001;60:1004–1019.
    1. Locatelli G., Wortge S., Buch T., Ingold B., Frommer F., Sobottka B., Kruger M., Karram K., Buhlmann C., Bechmann I., Heppner F.L., Waisman A., Becher B. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat. Neurosci. 2012;15:543–550.
    1. Kannagi R., Nudelman E., Hakomori S. Possible role of ceramide in defining structure and function of membrane glycolipids. Proc. Natl. Acad. Sci. U. S. A. 1982;79:3470–3474.
    1. Tagawa Y., Laroy W., Nimrichter L., Fromholt S.E., Moser A.B., Moser H.W., Schnaar R.L. Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids. Neurochem. Res. 2002;27:847–855.
    1. Raymond G.V., Seidman R., Monteith T.S., Kolodny E., Sathe S., Mahmood A., Powers J.M. Head trauma can initiate the onset of adreno-leukodystrophy. J. Neurol. Sci. 2010;290:70–74.
    1. Weller M., Liedtke W., Petersen D., Opitz H., Poremba M. Very-late-onset adrenoleukodystrophy: possible precipitation of demyelination by cerebral contusion. Neurology. 1992;42:367–370.
    1. Berger J., Pujol A., Aubourg P., Forss-Petter S. Current and future pharmacological treatment strategies in X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:845–856.
    1. Ferrer I., Aubourg P., Pujol A. General aspects and neuropathology of X-linked adrenoleukodystrophy. Brain Pathol. 2010;20:817–830.
    1. Powers J.M., Pei Z., Heinzer A.K., Deering R., Moser A.B., Moser H.W., Watkins P.A., Smith K.D. Adreno-leukodystrophy: oxidative stress of mice and men. J. Neuropathol. Exp. Neurol. 2005;64:1067–1079.
    1. Varvel N.H., Grathwohl S.A., Baumann F., Liebig C., Bosch A., Brawek B., Thal D.R., Charo I.F., Heppner F.L., Aguzzi A., Garaschuk O., Ransohoff R.M., Jucker M. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 2012;109:18150–18155.
    1. Davoust N., Vuaillat C., Androdias G., Nataf S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 2008;29:227–234.
    1. Powers J.M., Moser H.W., Moser A.B., Schaumburg H.H. Fetal adrenoleukodystrophy: the significance of pathologic lesions in adrenal gland and testis. Hum. Pathol. 1982;13:1013–1019.
    1. Petryk A., Polgreen L.E., Chahla S., Miller W., Orchard P.J. No evidence for the reversal of adrenal failure after hematopoietic cell transplantation in X-linked adrenoleukodystrophy. Bone Marrow Transplant. 2012;47:1377–1378.
    1. Powers J.M., Schaumburg H.H. The testis in adreno-leukodystrophy. Am. J. Pathol. 1981;102:90–98.
    1. Brennemann W., Kohler W., Zierz S., Klingmuller D. Testicular dysfunction in adrenomyeloneuropathy. Eur. J. Endocrinol. 1997;137:34–39.
    1. Harris-Jones J.N., Nixon P.G. Familial Addison's disease with spastic paraplegia. J. Clin. Endocrinol. Metab. 1955;15:739–744.

Source: PubMed

3
Abonnere