A bioclinical prognostic model using MYC and BCL2 predicts outcome in relapsed/refractory diffuse large B-cell lymphoma

Mark Bosch, Ariz Akhter, Bingshu E Chen, Adnan Mansoor, David Lebrun, David Good, Michael Crump, Lois Shepherd, David W Scott, Douglas A Stewart, Mark Bosch, Ariz Akhter, Bingshu E Chen, Adnan Mansoor, David Lebrun, David Good, Michael Crump, Lois Shepherd, David W Scott, Douglas A Stewart

Abstract

The objective of this study was to create a bioclinical model, based on clinical and molecular predictors of event-free and overall survival for relapsed/refractory diffuse large B-cell lymphoma patients treated on the Canadian Cancer Trials Group (CCTG) LY12 prospective study. In 91 cases, sufficient histologic material was available to create tissue microarrays and perform immunohistochemistry staining for CD10, BCL6, MUM1/IRF4, FOXP1, LMO2, BCL2, MYC, P53 and phosphoSTAT3 (pySTAT3) expression. Sixty-seven cases had material sufficient for fluorescent in situ hybridization (FISH) for MYC and BCL2 In addition, 97 formalin-fixed, paraffin-embedded tissue samples underwent digital gene expression profiling (GEP) to evaluate BCL2, MYC, P53, and STAT3 expression, and to determine cell-of-origin (COO) using the Lymph2Cx assay. No method of determining COO predicted event-free survival (EFS) or overall survival (OS). Factors independently associated with survival outcomes in multivariate analysis included primary refractory disease, elevated serum lactate dehydrogenase (LDH) at relapse, and MYC or BCL2 protein or gene expression. A bioclinical score using these four factors predicted outcome with 3-year EFS for cases with 0-1 vs 2-4 factors of 55% vs 16% (P<0.0001), respectively, assessing MYC and BCL2 by immunohistochemistry, 46% vs. 5% (P<0.0001) assessing MYC and BCL2 messenger ribonucleic acid (mRNA) by digital gene expression, and 42% vs 21% (P=0.079) assessing MYC and BCL2 by FISH. This proposed bioclinical model should be further studied and validated in other datasets, but may discriminate relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients who could benefit from conventional salvage therapy from others who require novel approaches. The LY12 study; clinicaltrials.gov Identifier: 00078949.

Trial registration: ClinicalTrials.gov NCT00078949.

Copyright© 2018 Ferrata Storti Foundation.

Figures

Figure 1.
Figure 1.
Relationship between IHC, digital GEP and FISH testing, and results for overlapping cases. FISH: fluorescence in situ hybridization; IHC: immunohistochemistry; GEP: gene expression profiling.
Figure 2.
Figure 2.
Hazard ratios by different thresholds of MYC and BCL2 GEP for EFS and OS. Vertical dash line indicates pre-specified 1.5× median threshold used in the analysis. EFS: event-free survival; OS: overall survival; mRNA: messenger ribonucleic acid.
Figure 3.
Figure 3.
Outcome of rrDLBCL according to bioclinical model score comparing 0–1 factors (low-risk) vs. 2–4 factors (high-risk), where factors include: primary refractory disease, elevated LDH, MYC expression, and BCL2 expression. Bioclinical model assessing MYC and BCL2 by IHC (Figure 3A EFS, Figure 3B OS) or by GEP (Figure 3C EFS, Figure 3D OS). EFS: event-free survival; OS: overall survival; GEP: gene expression profiling; IHC: immunohistochemistry.

References

    1. Sujobert P, Salles G, Bachy E. Molecular classification of diffuse large B-cell lymphoma: what Is clinically relevant? Hematol Oncol Clin North Am. 2016; 30(6):1163–1177.
    1. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–842.
    1. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–3496.
    1. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–4190.
    1. Martin A, Conde E, Arnan M, et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma: the influence of prior exposure to rituximab on outcome. A GEL/TAMO study. Haematologica. 2008;93(12):1829–1836
    1. Hernandez-Ilizaliturri FJ, Czuczman MS. Therapeutic options in relapsed or refractory diffuse large B-cell lymphoma. Part 1. current treatment approaches. Oncology (Williston Park). 2009;23(6):546–553.
    1. Elstrom RL, Martin P, Ostrow K, et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel therapeutic strategies. Clin Lymphoma Myeloma Leuk. 2010;10(3):192–196.
    1. Oliansky DM, Czuczman M, Fisher RI, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of diffuse large B cell lymphoma: update of the 2001 evidence-based review. Biol Blood Marrow Transplant. 2011;17(1):20–47.
    1. Rigacci L, Fabbri A, Puccini B, et al. Oxaliplatin-based chemotherapy (dexamethasone, high-dose cytarabine, and oxaliplatin) ± rituximab is an effective salvage regimen in patients with relapsed or refractory lymphoma. Cancer. 2010;116(19): 4573–4579.
    1. Morin RD, Assouline S, Alcaide M, et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin Cancer Res. 2016;22(9):2290–2300.
    1. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–282.
    1. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494–5502.
    1. Meyer PN, Fu K, Greiner TC, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol. 2011;29(2): 200–207.
    1. Winter JN. Prognostic markers in diffuse large B-cell lymphoma: Keys to the underlying biology. Curr Hematol Malig Rep. 2007;2(4):235–241.
    1. Mounier N, Briere J, Gisselbrecht C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101(11):4279–4284.
    1. de Jong D, Rosenwald A, Chhanabhai M, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications–a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2007;25(7):805–812.
    1. de Jong D, Xie W, Rosenwald A, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications (a study from the Lunenburg Lymphoma Biomarker Consortium). J Clin Pathol. 2009;62(2):128–138.
    1. Fu K, Weisenburger DD, Choi WW, et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol. 2008;26(28):4587–4594.
    1. Thieblemont C, Briere J, Mounier N, et al. The germinal center/activated B-cell sub-classification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study. J Clin Oncol. 2011;29(31):4079–4087.
    1. Scott DW, Wright GW, Williams PM, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123(8):1214–1217.
    1. Scott DW. Cell-of-origin in diffuse large B-cell lymphoma: are the assays ready for the clinic? Am Soc Clin Oncol Educ Book. 2015:e458–466.
    1. Sesques P, Johnson NA. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood. 2017;129(3):280–288.
    1. Perry AM, Alvarado-Bernal Y, Laurini JA, et al. MYC and BCL2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with rituximab. Br J Haematol. 2014;165(3):382–391.
    1. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013;121(20):4021–4031.
    1. Green TM, Young KH, Visco C, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3460–3467.
    1. Agarwal R, Lade S, Liew D, et al. Role of immunohistochemistry in the era of genetic testing in MYC-positive aggressive B-cell lymphomas: a study of 209 cases. J Clin Pathol. 2016;69(3):266–270.
    1. Horn H, Ziepert M, Becher C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121(12):2253–2263.
    1. Ennishi D, Mottok A, Ben-Neriah S, et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact. Blood. 2017;129(20):2760–2770.
    1. Scott DW, Mottok A, Ennishi D, et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol. 2015;33(26):2848–2856.
    1. Cortez MA, Scrideli CA, Yunes JA, et al. mRNA expression profile of multidrug resistance genes in childhood acute lymphoblastic leukemia. Low expression levels associated with a higher risk of toxic death. Pediatr Blood Cancer. 2009;53(6):996–1004.
    1. Zhou K, Yi S, Yu Z, et al. MicroRNA-223 expression is uniformly down-regulated in B cell lymphoproliferative disorders and is associated with poor survival in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(6):1155–1161.
    1. Sauerbrey A, Voigt A, Wittig S, Hafer R, Zintl F. Messenger RNA analysis of the multidrug resistance related protein (MRP1) and the lung resistance protein (LRP) in de novo and relapsed childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2002;43(4):875–879.
    1. Lin SC, Gan ZH, Yao Y, Min da L. The prognostic value of forkhead box P3 expression in operable breast cancer: a large-scale meta-analysis. PLoS One. 2015;10(8):e0136374.
    1. Kaplan ELM, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–481.
    1. Cox DR. Regression Models and Life-Tables. J Royal Stat Soc. Series B (Methodological). 1972;34(2):187–220.
    1. SAS Institute Inc. C, NC, USA. SAS software package version 9.2; 2013.
    1. Vardhana SA, Sauter CS, Matasar MJ, et al. Outcomes of primary refractory diffuse large B-cell lymphoma (DLBCL) treated with salvage chemotherapy and intention to transplant in the rituximab era. Br J Haematol. 2017;176(4):591–599.
    1. Costa LJ, Maddocks K, Epperla N, et al. Diffuse large B-cell lymphoma with primary treatment failure: Ultra-high risk features and benchmarking for experimental therapies. Am J Hematol. 2017;92(2):161–170.
    1. Herrera AF, Mei M, Low L, et al. Relapsed or refractory double-expressor and double-hit lymphomas have inferior progression-free survival after autologous stem-cell transplantation. J Clin Oncol. 2017; 35(1):24–31.
    1. Smith SM. Impact of double-hit and double-expressor phenotypes in relapsed aggressive B-cell lymphomas treated with autologous hematopoietic stem cell transplantation. J Clin Oncol. 2017;35(1):1–3.
    1. Kuruvilla J, MacDonald DA, Kouroukis CT, et al. Salvage chemotherapy and autologous stem cell transplantation for transformed indolent lymphoma: a subset analysis of NCIC CTG LY12. Blood. 2015;126(6):733–738.
    1. Xie Y, Bulbul MA, Ji L, et al. p53 expression is a strong marker of inferior survival in de novo diffuse large B-cell lymphoma and may have enhanced negative effect with MYC coexpression: a single institutional clinicopathologic study. Am J Clin Pathol. 2014;141(4):593–604.
    1. Perry AM, Alvarado-Bernal Y, Laurini JA, et al. MYC and BCL2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with rituximab. Br J Haematol. 2014;165(3):382–391.
    1. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–3459.
    1. Chen BE, Jiang W, Tu D. (2014). A hierarchical Bayes model for biomarker subset effects in clinical trials. Computational Statistics and Data Analysis. 2014;71:324–334.
    1. Fang T, Mackillop W, Jiang W, Hildesheim A, Wacholder S, Chen BE. A Bayesian method for risk window estimatin with application to HPV vaccine trial. Computational Statistics and Data Analysis. 2017;112:53–62.
    1. Costa LJ, Feldman AL, Micallef IN, et al. Germinal center B (GCB) and non-GCB cell-like diffuse large B cell lymphomas have similar outcomes following autologous haematopoietic stem cell transplantation. Br J Haematol. 2008;142(3):404–412.
    1. Gu K, Weisenburger DD, Fu K, et al. Cell of origin fails to predict survival in patients with diffuse large B-cell lymphoma treated with autologous hematopoietic stem cell transplantation. Hematol Oncol. 2012; 30(3):143–149.
    1. Nyman H, Jantunen E, Juvonen E, et al. Impact of germinal center and non-germinal center phenotypes on overall and failure-free survival after high-dose chemotherapy and auto-SCT in primary diffuse large B-cell lymphoma. Bone Marrow Transplant. 2008;42(2):93–98.
    1. Staiger AM, Ziepert M, Horn H, et al. Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2017;35(22):2515–2526.

Source: PubMed

3
Abonnere