Effect of Automated Oxygen Titration during Walking on Dyspnea and Endurance in Chronic Hypoxemic Patients with COPD: A Randomized Crossover Trial

Linette Marie Kofod, Elisabeth Westerdahl, Morten Tange Kristensen, Barbara Cristina Brocki, Thomas Ringbæk, Ejvind Frausing Hansen, Linette Marie Kofod, Elisabeth Westerdahl, Morten Tange Kristensen, Barbara Cristina Brocki, Thomas Ringbæk, Ejvind Frausing Hansen

Abstract

The need for oxygen increases with activity in patients with COPD and on long-term oxygen treatment (LTOT), leading to periods of hypoxemia, which may influence the patient's performance. This study aimed to evaluate the effect of automated oxygen titration compared to usual fixed-dose oxygen treatment during walking on dyspnea and endurance in patients with COPD and on LTOT. In a double-blinded randomised crossover trial, 33 patients were assigned to use either automated oxygen titration or the usual fixed-dose in a random order in two walking tests. A closed-loop device, O2matic delivered a variable oxygen dose set with a target saturation of 90-94%. The patients had a home oxygen flow of (mean ± SD) 1.6 ± 0.9 L/min. At the last corresponding isotime in the endurance shuttle walk test, the patients reported dyspnea equal to median (IQR) 4 (3-6) when using automated oxygen titration and 8 (5-9) when using fixed doses, p < 0.001. The patients walked 10.9 (6.5-14.9) min with automated oxygen compared to 5.5 (3.3-7.9) min with fixed-dose, p < 0.001. Walking with automated oxygen titration had a statistically significant and clinically important effect on dyspnea. Furthermore, the patients walked for a 98% longer time when hypoxemia was reduced with a more well-matched, personalised oxygen treatment.

Keywords: O2matic; exercise; long-term oxygen treatment; physiotherapy; respiratory failure.

Conflict of interest statement

The principal investigator has no conflicts of interest. One of the investigators, EFH is the main inventor of O2matic and hold shares in O2matic Ltd. EFH were not involved in the data collection nor in the primary analysis of the data. O2matic Ltd is not involved in the study. Apart from the above conflict of interest, the remaining investigators have none.

Figures

Figure 1
Figure 1
Consort flow diagram showing numbers of participants at each visit. ESWT: endurance shuttle walk test, 6MWT: six-minute walk test.
Figure 2
Figure 2
Percentage of time spent in the different oxygen saturation intervals (SpO2) when walking with automated oxygen titration and fixed oxygen dose in (A) the ESWT and (B) the 6MWT. The exact percentage of time in the respective interval is added on top of each bar. ESWT: endurance shuttle walk test, 6MWT: six-minute walk test.
Figure 3
Figure 3
Oxygen saturation (SpO2) during (A) the ESWT using automated oxygen titration, (B) the ESWT using the usual fixed oxygen dose, (C) the 6MWT using automated oxygen titration, and (D) the 6MWT when using fixed oxygen dose. Data in panel (A,B) are presented as individual patients, represented with different colors, to visualise the individual walking time, and in panel (C,D) as median with 25–75% quartiles. ESWT: endurance shuttle walk test, 6MWT: six-minute walk test.

References

    1. GOLD—Guidelines. From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2021. [(accessed on 20 September 2021)]. Available online:
    1. McCarthy B., Casey D., Devane D. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015;2((Suppl. S2)):CD003793. doi: 10.1002/14651858.CD003793.pub3.
    1. Hardinge M., Annandale J., Bourne S., Cooper B., Evans A., Freeman D., Green A., Hippolyte S., Knowles V., MacNee W., et al. British Thoracic Society guidelines for home oxygen use in adults: Accredited by NICE. Thorax. 2015;70:i1–i43. doi: 10.1136/thoraxjnl-2015-206865.
    1. Jacobs S.S., Krishnan J.A., Lederer D.J., Ghazipura M., Hossain T., Tan A.-Y.M., Carlin B., Drummond M.B., Ekström M., Garvey C., et al. Home Oxygen Therapy for Adults with Chronic Lung Disease. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020;202:e121–e141. doi: 10.1164/rccm.202009-3608ST.
    1. Jensen D., Schaeffer M.R., Guenette J.A. Pathophysiological mechanisms of exertional breathlessness in chronic obstructive pulmonary disease and interstitial lung disease. Curr. Opin. Support. Palliat. Care. 2018;12:237–245. doi: 10.1097/SPC.0000000000000377.
    1. Wijkstra P., Guyatt G., Ambrosino N., Celli B., Guell R., Muir J., Prefaut C., Mendes E., Ferreira I., Austin P., et al. International approaches to the prescription of long-term oxygen therapy. Eur. Respir. J. 2001;18:909–913. doi: 10.1183/09031936.01.00202301.
    1. Kim Y., Kim H.I., Park J.Y., Hong J.Y., Kim J.-H., Min K.H., Rhee C.K., Park S., Lee C.Y., Lim S.Y., et al. Korean physician prescription patterns for home oxygen therapy in chronic obstructive pulmonary disease patients. Korean J. Intern. Med. 2021 doi: 10.3904/kjim.2020.470.
    1. Güell Rous R. Long-term oxygen therapy: Are we prescribing appropriately? Int. J. Chron. Obstruct. Pulmon. Dis. 2008;3((Suppl. S2)):231–237. doi: 10.2147/COPD.S1230.
    1. Hansen E.F., Hove J.D., Bech C.S., Jensen J.S., Kallemose T., Vestbo J. Automated oxygen control with O2matic((R)) during admission with exacerbation of COPD. Int. J. Chron. Obstruct. Pulmon Dis. 2018;13:3997–4003. doi: 10.2147/COPD.S183762.
    1. Lellouche F., Bouchard P.-A., Roberge M., Simard S., L’Her E., Maltais F., Lacasse Y. Automated oxygen titration and weaning with FreeO2 in patients with acute exacerbation of COPD: A pilot randomized trial. Int. J. Chronic Obstr. Pulm. Dis. 2016;11:1983–1990. doi: 10.2147/COPD.S112820.
    1. Vivodtzev I., L’Her E., Vottero G., Yankoff C., Tamisier R., Maltais F., Lellouche F., Pépin J.-L. Automated O2 titration improves exercise capacity in patients with hypercapnic chronic obstructive pulmonary disease: A randomised controlled cross-over trial. Thorax. 2018;74:298–301. doi: 10.1136/thoraxjnl-2018-211967.
    1. Lellouche F., L’Her E., Bouchard P.-A., Brouillard C., Maltais F. Automatic Oxygen Titration During Walking in Subjects With COPD: A Randomized Crossover Controlled Study. Respir. Care. 2016;61:1456–1464. doi: 10.4187/respcare.04406.
    1. Spruit M.A., Singh S.J., Garvey C., ZuWallack R., Nici L., Rochester C., Hill K., Holland A.E., Lareau S.C., Man W.D.-C., et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013;188:e13–e64. doi: 10.1164/rccm.201309-1634ST.
    1. Holland A.E., Spruit M.A., Troosters T., Puhan M.A., Pepin V., Saey D., McCormack M.C., Carlin B.W., Sciurba F.C., Pitta F., et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Puhan M.A., Chandra D., Mosenifar Z., Ries A., Make B., Hansel N.N., Wise R., Sciurba F., for the National Emphysema Treatment Trial (NETT) Research Group The minimal important difference of exercise tests in severe COPD. Eur. Respir. J. 2010;37:784–790. doi: 10.1183/09031936.00063810.
    1. Løkke A., Titlestad I., Marsaa K. Dansk KOL-Vejledning. 2017. [(accessed on 20 September 2021)]. p. 2. Available online:
    1. Ekström M. Why treatment efficacy on breathlessness in laboratory but not daily life trials? The importance of standardized exertion. Curr. Opin. Support. Palliat. Care. 2019;13:179–183. doi: 10.1097/SPC.0000000000000444.
    1. Harris P.A., Taylor R., Minor B.L., Elliott V., Fernandez M., O’Neal L., McLeod L., Delacqua G., Delacqua F., Kirby J., et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
    1. Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Ries A.L. Minimally Clinically Important Difference for the UCSD Shortness of Breath Questionnaire, Borg Scale, and Visual Analog Scale. COPD: J. Chronic Obstr. Pulm. Dis. 2005;2:105–110. doi: 10.1081/COPD-200050655.
    1. O’Donnell D.E., Banzett R.B., Carrieri-Kohlman V., Casaburi R., Davenport P.W., Gandevia S.C., Gelb A.F., Mahler D.A., Webb K.A. Pathophysiology of Dyspnea in Chronic Obstructive Pulmonary Disease: A Roundtable. Proc. Am. Thorac. Soc. 2007;4:145–168. doi: 10.1513/pats.200611-159CC.
    1. O’Donnell D.E., D’Arsigny C., Webb K.A. Effects of Hyperoxia on Ventilatory Limitation During Exercise in Advanced Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001;163:892–898. doi: 10.1164/ajrccm.163.4.2007026.
    1. Garrod R., A Paul E., A Wedzicha J. Supplemental oxygen during pulmonary rehabilitation in patients with COPD with exercise hypoxaemia. Thorax. 2000;55:539–543. doi: 10.1136/thorax.55.7.539.
    1. Jarosch I., Gloeckl R., Damm E., Schwedhelm A.L., Buhrow D., Jerrentrup A., Spruit M.A., Kenn K. Short-term Effects of Supplemental Oxygen on 6-Min Walk Test Outcomes in Patients With COPD: A Randomized, Placebo-Controlled, Single-blind, Crossover Trial. Chest. 2017;151((Suppl. S4)):795–803. doi: 10.1016/j.chest.2016.11.044.
    1. Nasilowski J., Przybylowski T., Zielinski J., Chazan R. Comparing supplementary oxygen benefits from a portable oxygen concentrator and a liquid oxygen portable device during a walk test in COPD patients on long-term oxygen therapy. Respir. Med. 2008;102:1021–1025. doi: 10.1016/j.rmed.2008.02.005.
    1. Soguel Schenkel N., Burdet L., de Muralt B., Fitting J.W. Oxygen saturation during daily activities in chronic obstructive pulmonary disease. Eur. Respir. J. 1996;9((Suppl. S12)):2584–2589. doi: 10.1183/09031936.96.09122584.

Source: PubMed

3
Abonnere