Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases

Chia-Chu Chang, Ping-Fang Chiu, Chia-Lin Wu, Cheng-Ling Kuo, Ching-Shan Huang, Chin-San Liu, Ching-Hui Huang, Chia-Chu Chang, Ping-Fang Chiu, Chia-Lin Wu, Cheng-Ling Kuo, Ching-Shan Huang, Chin-San Liu, Ching-Hui Huang

Abstract

Introduction: Cell-free deoxyribonucleic acid DNA (cf-DNA) in urine is promising due to the advantage of urine as an easily obtained and non-invasive sample source over tissue and blood. In clinical practice, it is important to identify non-invasive biomarkers of chronic kidney disease (CKD) in monitoring and surveillance of disease progression. Information is limited, however, regarding the relationship between urine and plasma cf-DNA and the renal outcome in CKD patients.

Methods: One hundred and thirty-one CKD patients were enrolled between January 2016 and September 2018. Baseline urine and plasma cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) were isolated using quantitative real-time PCR. Estimated glomerular filtration rate (eGFR) measurement was performed at baseline and 6-month follow-up. Favorable renal outcome was defined as eGFR at 6 months minus baseline eGFR> = 0. Receiver operator characteristics (ROC) curve analysis was performed to assess different samples of cf-DNA to predict favorable renal outcomes at 6 months. A multivariate linear regression model was used to evaluate independent associations between possible predictors and different samples of cf-DNA.

Results: Patients with an advanced stage of CKD has significantly low plasma cf-nDNA and high plasma neutrophil gelatinase-associated lipocalin (NGAL) levels. Low urine cf-mtDNA, cf-nDNA levels and low plasma NGAL were significantly correlated with favorable renal outcomes at 6 months. The urine albumin-creatinine ratio (ACR) or urine protein-creatinine ratio (PCR) level is a robust predictor of cf-mtDNA and cf-nDNA in CKD patients. Baseline urine levels of cf-mtDNA and cf-nDNA could predict renal outcomes at 6 months.

Conclusions: Urinary cf-mtDNA and cf-nDNA may provide novel prognostic biomarkers for renal outcome in CKD patients. The levels of plasma cf-nDNA and plasma NGAL are significantly correlated with the severity of CKD.

Keywords: Cell-free mitochondrial deoxyribonucleic acid; Cell-free nuclear deoxyribonucleic acid; Cf-mtDNA; Cf-nDNA; Chronic kidney disease; NGAL; Neutrophil gelatinase-associated lipocalin.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Evaluation of urinary cf-nDNA and urine cf-mtDNA as predictors of CKD patient outcomes after 6 months. The areas under the curves (AUC) were as follows: urine cf-mtDNA: 0.685 (0.586–0.784, P = 0.001*), and urine cf-nDNA: 0.730 (0.637–0.823, P < 0.001*)

References

    1. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37. doi: 10.1016/j.trsl.2016.04.007.
    1. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO) Kidney Int. 2005;67:2089–2100. doi: 10.1111/j.1523-1755.2005.00365.x.
    1. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365:331–340. doi: 10.1016/S0140-6736(05)17789-7.
    1. Bello AK, Nwankwo E, El Nahas AM. Prevention of chronic kidney disease: a global challenge. Kidney Int Suppl. 2005;98:S11–S17. doi: 10.1111/j.1523-1755.2005.09802.x.
    1. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–352. doi: 10.1016/S0140-6736(13)60595-4.
    1. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Phys Renal Phys. 2013;306:F367–F378. doi: 10.1152/ajprenal.00571.2013.
    1. Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G, et al. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med. 2012;53:30–43. doi: 10.1016/j.freeradbiomed.2012.03.015.
    1. Zhang A, Jia Z, Guo X, Yang T. Aldosterone induces epithelial mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Ren Physiol. 2007;293:F723–F731. doi: 10.1152/ajprenal.00480.2006.
    1. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12:267–280. doi: 10.1038/nrneph.2015.214.
    1. Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B, et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage. A therapeutic target of PPAR gamma. Am J Pathol. 2011;178:2020–2031. doi: 10.1016/j.ajpath.2011.01.029.
    1. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017;92:1071–1083. doi: 10.1016/j.kint.2017.06.030.
    1. Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol. 2015;26:1040–1052. doi: 10.1681/ASN.2013111202.
    1. Gong W, Mao S, Yu J, Song J, Jia Z, Huang S, et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am J Phys Renal Phys. 2016;310:F1081–F1088. doi: 10.1152/ajprenal.00534.2015.
    1. Hallan S, Sharma K. The role of mitochondria in diabetic kidney disease. Curr Diab Rep. 2016;16:61. doi: 10.1007/s11892-016-0748-0.
    1. Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171:1917–1942. doi: 10.1111/bph.12503.
    1. Mandel P, Metais P. Les acides du plasma sanguin chez l’homme. C R Acad Sci Paris. 1948;142:241–243.
    1. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780.
    1. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–U142. doi: 10.1038/nature10992.
    1. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013;10:e1001577. doi: 10.1371/journal.pmed.1001577.
    1. Tin A, Grams ME, Ashar FN, Lane JA, Rosenberg AZ, Grove ML, et al. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J Am Soc Nephrol. 2016;27:2467–2473. doi: 10.1681/ASN.2015060661.
    1. Cao H, Ye H, Sun Z, Shen X, Song Z, Wu X, et al. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients. PLoS One. 2014;9:e113179. doi: 10.1371/journal.pone.0113179.
    1. Lo Y.M., Rainer T.H., Chan L.Y., Hjelm N.M., Cocks R.A.. (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46, 319–323. PMID: 10702517.
    1. Rainer TH, Lam NYL. Circulating nucleic acids and critical illness. Ann N Y Acad Sci. 2006;1075:271–277. doi: 10.1196/annals.1368.035.
    1. Antonatos D, Patsilinakos S, Spanodimos S, Korkonikitas P, Tsigas D. Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci. 2006;1075:278–281. doi: 10.1196/annals.1368.037.
    1. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10:R60. doi: 10.1186/cc4894.
    1. Saukkonen K, Lakkisto P, Varpula M, Varpula T, Voipio-Pulkki LM, Pettilä V, et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med. 2007;33:1624–1627. doi: 10.1007/s00134-007-0686-z.
    1. Hurtado-Roca Y, Ledesma M, Gonzalez-Lazaro M, Moreno-Loshuertos R, Fernandez-Silva P, Enriquez JA, et al. Adjusting MtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS One. 2016;11:e0163770. doi: 10.1371/journal.pone.0163770.
    1. Urata M, Koga-Wada Y, Kayamori Y, Kang D. Platelet contamination causes large variation as well as overestimation of mitochondrial DNA content of peripheral blood mononuclear cells. Ann Clin Biochem. 2008;45:513–514. doi: 10.1258/acb.2008.008008.
    1. Lee JE, Park H, Ju YS, Kwak M, Kim JI, Oh HY, et al. Higher mitochondrial DNA copy number is associated with lower prevalence of microalbuminuria. Exp Mol Med. 2009;41:253–258. doi: 10.3858/emm.2009.41.4.028.
    1. Lu T, Li J. (2017) Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res 7, 2318–2332. PubMed PMID: 29218253; PubMed Central PMCID: PMC5714758.
    1. Ho PWL, Pang WF, Luk CCW, Ng JKC, Chow KM, Kwan BCH, et al. Urinary mitochondrial DNA level as a biomarker of acute kidney injury. Kidney Dis. 2017;3:78–83. doi: 10.1159/000475883.
    1. Whitaker RM, Stallons LJ, Kneff JE, Alge JL, Harmon JL, Rahn JJ, et al. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney Int. 2015;88:1336–1344. doi: 10.1038/ki.2015.240.
    1. Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, et al. (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46, 1078–1084. PMID: 10926886.
    1. Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR. Circulating nucleic acids and apoptosis. Ann N Y Acad Sci. 2001;945:239–249. doi: 10.1111/j.1749-6632.2001.tb03892.x.
    1. Levey Andrew S., Coresh Josef, Balk Ethan, Kausz Annamaria T., Levin Adeera, Steffes Michael W., Hogg Ronald J., Perrone Ronald D., Lau Joseph, Eknoyan Garabed. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Annals of Internal Medicine. 2003;139(2):137. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311:2518–2531. doi: 10.1001/jama.2014.6634.
    1. Lo Y. M. Dennis, Tein Mark S.C., Lau Tze K., Haines Christopher J., Leung Tse N., Poon Priscilla M.K., Wainscoat James S., Johnson Philip J., Chang Allan M.Z., Hjelm N. Magnus. Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics. 1998;62(4):768–775. doi: 10.1086/301800.
    1. García Moreira V, Prieto García B, de la Cera Martínez T, Alvarez Menéndez FV. Elevated transrenal DNA (cell-free urine DNA) in patients with urinary tract infection compared to healthy controls. Clin Biochem. 2009;42:729–731. doi: 10.1016/j.clinbiochem.2008.12.021.
    1. Wei PZ, Kwan BCH, Chow KM, Cheng PMS, Luk CCW, Li PKT, et al. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol Dial Transplant. 2018;33:784–788. doi: 10.1093/ndt/gfx339.
    1. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080. doi: 10.1101/cshperspect.a006080.
    1. Tower J. Programmed cell death in aging. Ageing Res Rev. 2015;23:90–100. doi: 10.1016/j.arr.2015.04.002.
    1. Madeo F, Zimmermann A, Kroemer G, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125:85–93. doi: 10.1172/JCI73946.
    1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016;12:1–222. doi: 10.1080/15548627.2015.1100356.
    1. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–293. doi: 10.1016/j.molcel.2010.09.023.
    1. Jin J, Ku YH, Kim Y, Kim Y, Kim K, Lee JY, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res. 2012;2012:168602. doi: 10.1155/2012/168602.
    1. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18:913–922. doi: 10.1681/ASN.2006070767.
    1. Guo Z, Liu X, Li M, Shao C, Tao J, Sun W, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med. 2015;13:371. doi: 10.1186/s12967-015-0712-9.
    1. Chien HY, Chen CY, Chiu YH, Lin YC, Li WC. Differential microRNA profiles predict diabetic nephropathy progression in Taiwan. Int J Med Sci. 2016;13:457–465. doi: 10.7150/ijms.15548.
    1. Harder JL, Hodgin JB, Kretzler M. Integrative biology of diabetic kidney disease. Kidney Dis (Basel) 2015;1:194–203. doi: 10.1159/000439196.
    1. Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–819. doi: 10.7326/0003-4819-148-11-200806030-00003.
    1. Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med. 2011;17:216–222. doi: 10.1038/nm.2290.
    1. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–344. doi: 10.2215/CJN.03530708.
    1. Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, Mysliwiec M. Neutrophil gelatinase associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc. 2009;41:158–161. doi: 10.1016/j.transproceed.2008.10.088.
    1. Liu KD, Yang W, Anderson AH, Feldman HI, Demirjian S, Hamano T, et al. Chronic renal insufficiency cohort (CRIC) study investigators: urine neutrophil gelatinase–associated lipocalin levels do not improve risk prediction of progressive chronic kidney disease. Kidney Int. 2013;83:909–914. doi: 10.1038/ki.2012.458.
    1. Mishra, J., Qing, M., Prada, A., Zahedi, K., Yang, Y., Barasch, J., et al. (2003) Identification of NGAL as a novel early urinary marker for ischemic renal injury. J Am Soc Nephrol 14, 2534–2543. PMID: 14514731.
    1. Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–621. doi: 10.1172/JCI23056.

Source: PubMed

3
Abonnere