The Tuberculosis Cascade of Care in India's Public Sector: A Systematic Review and Meta-analysis

Ramnath Subbaraman, Ruvandhi R Nathavitharana, Srinath Satyanarayana, Madhukar Pai, Beena E Thomas, Vineet K Chadha, Kiran Rade, Soumya Swaminathan, Kenneth H Mayer, Ramnath Subbaraman, Ruvandhi R Nathavitharana, Srinath Satyanarayana, Madhukar Pai, Beena E Thomas, Vineet K Chadha, Kiran Rade, Soumya Swaminathan, Kenneth H Mayer

Abstract

Background: India has 23% of the global burden of active tuberculosis (TB) patients and 27% of the world's "missing" patients, which includes those who may not have received effective TB care and could potentially spread TB to others. The "cascade of care" is a useful model for visualizing deficiencies in case detection and retention in care, in order to prioritize interventions.

Methods and findings: The care cascade constructed in this paper focuses on the Revised National TB Control Programme (RNTCP), which treats about half of India's TB patients. We define the TB cascade as including the following patient populations: total prevalent active TB patients in India, TB patients who reach and undergo evaluation at RNTCP diagnostic facilities, patients successfully diagnosed with TB, patients who start treatment, patients retained to treatment completion, and patients who achieve 1-y recurrence-free survival. We estimate each step of the cascade for 2013 using data from two World Health Organization (WHO) reports (2014-2015), one WHO dataset (2015), and three RNTCP reports (2014-2016). In addition, we conduct three targeted systematic reviews of the scientific literature to identify 39 unique articles published from 2000-2015 that provide additional data on five indicators that help estimate different steps of the TB cascade. We construct separate care cascades for the overall population of patients with active TB and for patients with specific forms of TB-including new smear-positive, new smear-negative, retreatment smear-positive, and multidrug-resistant (MDR) TB. The WHO estimated that there were 2,700,000 (95%CI: 1,800,000-3,800,000) prevalent TB patients in India in 2013. Of these patients, we estimate that 1,938,027 (72%) TB patients were evaluated at RNTCP facilities; 1,629,906 (60%) were successfully diagnosed; 1,417,838 (53%) got registered for treatment; 1,221,764 (45%) completed treatment; and 1,049,237 (95%CI: 1,008,775-1,083,243), or 39%, of 2,700,000 TB patients achieved the optimal outcome of 1-y recurrence-free survival. The separate cascades for different forms of TB highlight different patterns of patient attrition. Pretreatment loss to follow-up of diagnosed patients and post-treatment TB recurrence were major points of attrition in the new smear-positive TB cascade. In the new smear-negative and MDR TB cascades, a substantial proportion of patients who were evaluated at RNTCP diagnostic facilities were not successfully diagnosed. Retreatment smear-positive and MDR TB patients had poorer treatment outcomes than the general TB population. Limitations of our analysis include the lack of available data on the cascade of care in the private sector and substantial uncertainty regarding the 1-y period prevalence of TB in India.

Conclusions: Increasing case detection is critical to improving outcomes in India's TB cascade of care, especially for smear-negative and MDR TB patients. For new smear-positive patients, pretreatment loss to follow-up and post-treatment TB recurrence are considerable points of attrition that may contribute to ongoing TB transmission. Future multisite studies providing more accurate information on key steps in the public sector TB cascade and extension of this analysis to private sector patients may help to better target interventions and resources for TB control in India.

Conflict of interest statement

The authors of this manuscript have read the journal's policy and have the following competing interests: MP is a consultant to the Bill & Melinda Gates Foundation and a member of the Editorial Board of PLOS Medicine.

Figures

Fig 1. A model for the tuberculosis…
Fig 1. A model for the tuberculosis cascade of care in India that integrates the WHO onion model with concepts from the HIV cascade of care.
Adapted from WHO, 2009 [11].
Fig 2. Forest plot of studies estimating…
Fig 2. Forest plot of studies estimating the proportion of individuals in the community with cough >2 wk who report not having visited any medical provider after the onset of cough (Gap 1b).
ES, effect size; CI, confidence interval.
Fig 3. Forest plot of studies estimating…
Fig 3. Forest plot of studies estimating the proportion of individuals in the community with cough >2 wk who report not having visited a public sector provider after the onset of cough (Gap 1b).
ES, effect size; CI, confidence interval.
Fig 4. Forest plot of studies estimating…
Fig 4. Forest plot of studies estimating the proportion of individuals in the community with cough >2 wk who report not having visited a private sector provider after the onset of cough (Gap 1b).
ES, effect size; CI, confidence interval.
Fig 5. Forest plot of studies estimating…
Fig 5. Forest plot of studies estimating the proportion of patients who fail to provide a second sputum smear (i.e., “diagnostic default”), which allows estimation of the proportion of smear-positive TB patients who might be “missed” at TB diagnostic facilities (Gap 2).
ES, effect size; CI, confidence interval.
Fig 6. Forest plot of studies estimating…
Fig 6. Forest plot of studies estimating pretreatment loss to follow-up (i.e., “initial default”) of smear-positive TB patients in India (Gap 3).
ES, effect size; CI, confidence interval.
Fig 7. The cascade of care for…
Fig 7. The cascade of care for all forms of tuberculosis in India’s Revised National Tuberculosis Control Programme (RNTCP) in India, 2013.
Error bars depict 95% confidence intervals.
Fig 8. The tuberculosis cascade of care…
Fig 8. The tuberculosis cascade of care for new smear-positive tuberculosis patients detected and treated by the Revised National Tuberculosis Control Programme (RNTCP) in India, 2013.
Error bars depict 95% confidence intervals.
Fig 9. The tuberculosis cascade of care…
Fig 9. The tuberculosis cascade of care for new smear-negative tuberculosis patients detected and treated by the Revised National Tuberculosis Control Programme (RNTCP) in India, 2013.
Error bars depict 95% confidence intervals.
Fig 10. The tuberculosis cascade of care…
Fig 10. The tuberculosis cascade of care for retreatment smear-positive tuberculosis patients detected and treated by the Revised National Tuberculosis Control Programme (RNTCP) in India, 2013.
Error bars depict 95% confidence intervals.
Fig 11. The tuberculosis cascade of care…
Fig 11. The tuberculosis cascade of care for multidrug-resistant tuberculosis (MDR TB) patients detected and treated by the Revised National Tuberculosis Control Programme (RNTCP) in India, 2013.
Error bars depict 95% confidence intervals for each estimate.

References

    1. World Health Organization (WHO). Global tuberculosis report. Geneva: World Health Organization, 2014. Contract No.: WHO/HTM/TB/2014.08.
    1. World Health Organization (WHO). Global tuberculosis report. Geneva: WHO, 2015. Contract No.: WHO/HTM/TB/2015.22.
    1. Satyanarayana S, Subbaraman R, Shete P, Gore G, Das J, Cattamanchi A, et al. Quality of tuberculosis care in India: a systematic review. Int J Tuberc Lung Dis. 2015;19(7):751–63. 10.5588/ijtld.15.0186 .
    1. Das J, Kwan A, Daniels B, Satyanarayana S, Subbaraman R, Bergkvist S, et al. Use of standardised patients to assess quality of tuberculosis care: a pilot, cross-sectional study. Lancet Infect Dis. 2015;15(11):1305–13. 10.1016/s1473-3099(15)00077-8 .
    1. Sachdeva KS, Kumar A, Dewan P, Kumar A, Satyanarayana S. New vision for Revised National Tuberculosis Control Programme (RNTCP): Universal access—"reaching the un-reached". Indian J Med Res. 2012;135(5):690–4. .
    1. World Health Organization (WHO). Global strategy and targets for tuberculosis prevention, care, and control after 2015. Geneva: WHO, 2013. Contract No.: EB134/12.
    1. Gardner EM, McLees MP, Steiner JF, Del Rio C, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis. 2011;52(6):793–800. 10.1093/cid/ciq243 .
    1. Nosyk B, Montaner JS, Colley G, Lima VD, Chan K, Heath K, et al. The cascade of HIV care in British Columbia, Canada, 1996–2011: a population-based retrospective cohort study. Lancet Infect Dis. 2014;14(1):40–9. 10.1016/s1473-3099(13)70254-8 .
    1. Ali MK, Bullard KM, Gregg EW, Del Rio C. A cascade of care for diabetes in the United States: visualizing the gaps. Ann Intern Med. 2014;161(10):681–9. 10.7326/m14-0019 .
    1. Yehia BR, Schranz AJ, Umscheid CA, Lo Re V. The treatment cascade for chronic hepatitis C virus infection in the United States: a systematic review and meta-analysis. PLoS ONE. 2014;9(7):e101554 10.1371/journal.pone.0101554 .
    1. World Health Organization (WHO). TB impact measurement: policy and recommendations for how to assess the epidemiological burden of TB and the impact of TB control. Geneva: WHO, 2009. Contract No.: WHO/HTM/TB/2009.416.
    1. Satyanarayana S, Nair SA, Chadha SS, Shivashankar R, Sharma G, Yadav S, et al. From where are tuberculosis patients accessing treatment in India? Results from a cross-sectional community based survey of 30 districts. PLoS ONE. 2011;6(9):e24160 10.1371/journal.pone.0024160 .
    1. Hazarika I. Role of Private Sector in Providing Tuberculosis Care: Evidence from a Population-based Survey in India. J Glob Infect Dis. 2011;3(1):19–24. 10.4103/0974-777x.77291 .
    1. Thomas A, Gopi PG, Santha T, Chandrasekaran V, Subramani R, Selvakumar N, et al. Predictors of relapse among pulmonary tuberculosis patients treated in a DOTS programme in South India. Int J Tuberc Lung Dis. 2005;9(5):556–61. .
    1. Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L, et al. Impact of HIV infection on the recurrence of tuberculosis in South India. J Infect Dis. 2010;201(5):691–703. 10.1086/650528 .
    1. Central TB Division. TB India 2014: Revised National TB Control Programme annual status report. New Delhi: Ministry of Health and Family Welfare, 2014.
    1. Nunn AJ, Phillips PP, Mitchison DA. Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis. 2010;14(2):241–2. .
    1. WHO Country Office for India. Standards for TB Care in India. New Delhi: World Health Organization, 2014.
    1. World Health Organization (WHO). WHO TB burden estimates [dataset]. 2016 Mar 22 [cited 2016 June 20]. WHO. Available from:
    1. Central TB Division. TB India 2015: Revised National TB Control Programme annual status report. New Delhi: Ministry of Health and Family Welfare, 2015.
    1. Central TB Division. TB India 2016: Revised National TB Control Programme annual status report. New Delhi: Ministry of Health and Family Welfare, 2016.
    1. Srinath S, Sharath B, Santosha K, Chadha SS, Roopa S, Chander K, et al. Tuberculosis 'retreatment others': profile and treatment outcomes in the state of Andhra Pradesh, India. Int J Tuberc Lung Dis. 2011;15(1):105–9. .
    1. Rawat J, Biswas D, Sindhwani G, Kesharwani V, Masih V, Chauhan BS. Diagnostic defaulters: an overlooked aspect in the Indian Revised National Tuberculosis Control Program. J Infect Dev Ctries. 2012;6(1):20–2. .
    1. Sachdeva KS, Raizada N, Sreenivas A, Van't Hoog AH, van den Hof S, Dewan PK, et al. Use of Xpert MTB/RIF in Decentralized Public Health Settings and Its Effect on Pulmonary TB and DR-TB Case Finding in India. PLoS ONE. 2015;10(5):e0126065 10.1371/journal.pone.0126065 .
    1. Sadacharam K, Gopi PG, Chandrasekaran V, Eusuff SI, Subramani R, Santha T, et al. Status of smear-positive TB patients at 2–3 years after initiation of treatment under a DOTS programme. Indian J Tuberc. 2007;54(4):199–203. .
    1. Thomas BE, Velayutham B, Thiruvengadam K, Nair D, Barman SB, Jayabal L, et al. Perceptions of Private Medical Practitioners on Tuberculosis Notification: A Study from Chennai, South India. PLoS ONE. 2016;11(1):e0147579 10.1371/journal.pone.0147579 .
    1. Kundu D, Chopra K, Khanna A, Babbar N, Padmini TJ. Accelerating TB notification from the private health sector in Delhi, India. Indian J Tuberc. 2016;63(1):8–12. 10.1016/j.ijtb.2016.02.002 .
    1. Cowling K, Dandona R, Dandona L. Improving the estimation of the tuberculosis burden in India. Bull World Health Organ. 2014;92(11):817–25. 10.2471/blt.13.129775 .
    1. Central TB Division. TB India 2008: Revised National TB Control Programme annual status report. New Delhi: Ministry of Health and Family Welfare, 2008.
    1. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;1:Cd009593 10.1002/14651858.CD009593.pub3 .
    1. Muniyandi M, Rao VG, Bhat J, Yadav R. Performance of Revised National Tuberculosis Control Programme (RNTCP) in tribal areas in India. Indian J Med Res. 2015;141(5):624–9.
    1. Fochsen G, Deshpande K, Diwan V, Mishra A, Diwan VK, Thorson A. Health care seeking among individuals with cough and tuberculosis: a population-based study from rural India. Int J Tuberc Lung Dis. 2006;10(9):995–1000. .
    1. Bhat J, Rao VG, Gopalan PG, Yadav R, Nagamiah S, Tiwari AK, et al. Prevalence of pulmonary tuberculosis among tribal population of Madhya Pradesh, central India. Int J Epidemiol. 2009;38:1026–32. 10.1093/ije/dyp222
    1. Gopi PR, Subramani R, Narayanan PR. Evaluation of different types of chest symptoms for diagnosing pulmonary tuberculosis cases in community surveys. Indian J Tuberc. 2008;55:116–21.
    1. Chadha VK, Kumar P, Anjinappa SM, Singh S, Narasimhaiah S, Joshi MV, et al. Prevalence of pulmonary tuberculosis among adults in a rural sub-district of South India. PLoS ONE. 2012;7(8):e42625 10.1371/journal.pone.0042625 .
    1. Rao VG, Bhat J, Yadav R, Gopalan GP, Nagamiah S, Bhondeley MK, et al. Prevalence of pulmonary tuberculosis—a baseline survey in central India. PLoS ONE. 2012;7(8):e43225 10.1371/journal.pone.0043225 .
    1. Mase SR, Ramsay A, Ng V, Henry M, Hopewell PC, Cunningham J, et al. Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis. 2007;11(5):485–95. .
    1. Chadha VK, Praseeja P, Hemanthkumar NK, Shivshankara BA, Sharada MA, Nagendra N, et al. Implementation efficiency of a diagnostic algorithm in sputum smear-negative presumptive tuberculosis patients. Int J Tuberc Lung Dis. 2014;18(10):1237–42. 10.5588/ijtld.14.0218 .
    1. Thomas A, Gopi PG, Santha T, Jaggarajamma K, Charles N, Prabhakaran E, et al. Course of action taken by smear negative chest symptomatics: a report from a rural area in South India. Indian J Tuberc. 2006;53:4–6.
    1. Sarkar J, Murhekar MV. Factors associated with low utilization of X-ray facilities among the sputum negative chest symptomatics in Jalpaiguri District (West Bengal) 2009. Indian J Tuberc. 2011;58:208–11.
    1. Colebunders R, Bastian I. A review of the diagnosis and treatment of smear-negative pulmonary tuberculosis. Int J Tuberc Lung Dis. 2000;4(2):97–107. .
    1. Central TB Division. Training course for programme managers (module 1–4). New Delhi: Ministry of Health and Family Welfare, 2011.
    1. Chander V, Raina SK, Bhardwaj AK, Kashyap AK, Gupta A, Sood A. Is diagnostic protocol a cause of overestimation of extra-pulmonary tuberculosis in Himachal Pradesh? A report from a high-prevalence tuberculosis unit. Ann Trop Med PH. 2013;6(2):193–6.
    1. Mehra D, Kaushik RM, Kaushik R, Rawat J, Kakkar R. Initial default among sputum-positive pulmonary TB patients at a referral hospital in Uttarakhand, India. Trans R Soc Trop Med Hyg. 2013;107(9):558–65. 10.1093/trstmh/trt065 .
    1. Khandekar J, Acharya AS, R TH, Sharma A. Do patients with tuberculosis referred from a tertiary care referral centre reach their peripheral health institution? Natl Med J India. 2013;26(6):332–4. .
    1. Pillai D, Purty A, Prabakaran S, Singh Z, Soundappan G, Anandan V. Initial default among tuberculosis patients diagnosed in select medical colleges of Puducherry: issues and possible interventions. Int J Med Sci Public Health. 2015;4(7):1–4.
    1. Chadha SS, Sharath BN, Reddy K, Jaju J, Vishnu PH, Rao S, et al. Operational challenges in diagnosing multi-drug resistant TB and initiating treatment in Andhra Pradesh, India. PLoS ONE. 2011;6(11):e26659 10.1371/journal.pone.0026659 .
    1. Shringarpure KS, Isaakidis P, Sagili KD, Baxi RK. Loss-To-Follow-Up on Multidrug Resistant Tuberculosis Treatment in Gujarat, India: The WHEN and WHO of It. PLoS ONE. 2015;10(7):e0132543 10.1371/journal.pone.0132543 .
    1. Dandekar RH, Jagannath VD. The fate of tuberculosis cases after two years of DOTS chemotherapy in Aurangabad city, Maharasthra. Natl J Community Med. 2014;5(2):174–8.
    1. Prasad R, Verma SK, Shrivastava P, Kant S, Kushwaha RA, Kumar S. A follow up study on Revised National Tuberculosis Control Programme (RNTCP): results from a single centre study. Lung India. 2008;25(4):142–4. 10.4103/0970-2113.45277 .
    1. Tripathy S, Anand A, Inamdar V, Manoj MM, Khillare KM, Datye AS, et al. Clinical response of newly diagnosed HIV seropositive & seronegative pulmonary tuberculosis patients with the RNTCP Short Course regimen in Pune, India. Indian J Med Res. 2011;133:521–8. .
    1. Vashishtha R, Mohan K, Singh B, Devarapu SK, Sreenivas V, Ranjan S, et al. Efficacy and safety of thrice weekly DOTS in tuberculosis patients with and without HIV co-infection: an observational study. BMC Infect Dis. 2013;13:468 10.1186/1471-2334-13-468 .
    1. Charles N, Thomas B, Watson B, Raja Sakthivel M, Chandrasekeran V, Wares F. Care seeking behavior of chest symptomatics: a community based study done in South India after the implementation of the RNTCP. PLoS ONE. 2010;5(9):e12379 10.1371/journal.pone.0012379 .
    1. George O, Sharma V, Sinha A, Bastian S, Santha T. Knowledge and behaviour of chest symptomatics in urban slum populations of two states in India towards care-seeking. Indian Journal of Tuberculosis. 2013;60:95–106.
    1. Ghosh S, Sinhababu A, Taraphdar P, Mukhopadhyay DK, Mahapatra BS, Biswas AB. A study on care seeking behavior of chest symptomatics in a slum of Bankura, West Bengal. Indian J Public Health. 2010;54(1):42–4. 10.4103/0019-557x.70553 .
    1. Kar M, Logaraj M. Awareness, attitude and treatment seeking behaviour regarding tuberculosis in a rural area of Tamil Nadu. Indian J Tuberc. 2010;57(4):226–9. .
    1. Satyanarayana S, Nair SA, Chadha SS, Sharma G, Yadav S, Mohanty S, et al. Health-care seeking among people with cough of 2 weeks or more in India. Is passive TB case finding sufficient? Public Health Action. 2012;2(4):157–61. 10.5588/pha.12.0019
    1. Suganthi P, Chadha VK, Ahmed J, Umadevi G, Kumar P, Srivastava R, et al. Health seeking and knowledge about tuberculosis among persons with pulmonary symptoms and tuberculosis cases in Bangalore slums. Int J Tuberc Lung Dis. 2008;12(11):1268–73. .
    1. Thomas BE, Charles N, Watson B, Chandrasekaran V, Senthil Kumar R, Dhanalakshmi A, et al. Prevalence of chest symptoms amongst brick kiln migrant workers and care seeking behaviour: a study from South India. J Public Health (Oxf). 2014. 10.1093/pubmed/fdu104 .
    1. Balasubramanian R, Garg R, Santha T, Gopi PG, Subramani R, Chandrasekaran V, et al. Gender disparities in tuberculosis: report from a rural DOTS programme in south India. Int J Tuberc Lung Dis. 2004;8(3):323–32. .
    1. Chandrasekaran V, Ramachandran R, Cunningham J, Balasubramanian R, Thomas A, Sudha G, et al. Factors leading to tuberculosis diagnostic drop-out and delayed treatment initiation in Chennai, India. Int J Tuberc Lung Dis. 2005;9(Supplement 1):S172.
    1. Dandona R, Dandona L, Mishra A, Dhingra S, Venkatagopalakrishna K, Chauhan LS. Utilization of and barriers to public sector tuberculosis services in India. Natl Med J India. 2004;17(6):292–9. .
    1. Tripathy JP, Srinath S, Naidoo P, Ananthakrishnan R, Bhaskar R. Is physical access an impediment to tuberculosis diagnosis and treatment? A study from a rural district in North India. Public Health Action. 2013;3(3):235–9. 10.5588/pha.13.0044 .
    1. Ahmed J, Chadha VK, Singh S, Venkatachalappa B, Kumar P. Utilization of RNTCP services in rural areas of Bellary District, Karnataka, by gender, age and distance from health centre. Indian J Tuberc. 2009;56(2):62–8. .
    1. Chadha VK, Praseeja P, Gupta J, Ahmed J, Sharada MA, Srivastava R, et al. A descriptive study of tuberculosis case finding in private health care facilities in a South Indian district. Int J Tuberc Lung Dis. 2014;18(12):1455–8. 10.5588/ijtld.14.0228 .
    1. Dave P, Nimavat P, Shah A, Pujara K, Patel P, Modi B. Knowing more about initial default among diagnosed sputum smear-positive pulmonary tuberculosis patients in Gujarat, India [Abstract PC-868-03]. Int J Tuberc Lung Dis. 2013;17 (Suppl 2)(12):S469.
    1. Dholakia YN. TB/ HIV coordination through Public Private Partnership: lessons from the field. Indian J Tuberc. 2013;60(1):23–7. .
    1. Gopi PG, Chandrasekaran V, Subramani R, Narayanan PR. Failure to initiate treatment for tuberculosis patients diagnosed in a community survey and at health facilities under a DOTS program in a district of south India. Indian J Tuberc. 2005;52:153–6.
    1. Kumar S. A retrospective cohort study of the magnitude of initial default among sputum smear-positive TB patients diagnosed at NITRD New Delhi, 4th quarter 2012. India EIS Conferece; 2013 Nov 21–23; New Delhi, India.
    1. Mandal A, Basu M, Das P, Mukherjee S, Das S, Roy N. Magnitude and reasons of initial default among new sputum positive cases of pulmonary tuberculosis under RNTCP in a district of West Bengal, India. South East Asia J of Public Health. 2015;4(1):41–7. 10.3329/seajph.v4i1.21839
    1. Sai Babu B, Satyanarayana AV, Venkateshwaralu G, Ramakrishna U, Vikram P, Sahu S, et al. Initial default among diagnosed sputum smear-positive pulmonary tuberculosis patients in Andhra Pradesh, India. Int J Tuberc Lung Dis. 2008;12(9):1055–8. .
    1. Mehra RK, Dhingra VK, Nish A, Vashist RP. Study of relapse and failure cases of CAT I retreated with CAT II under RNTCP—an eleven year follow up. Indian J Tuberc. 2008;55(4):188–91. .
    1. Mahishale V, Patil B, Lolly M, Eti A, Khan S. Prevalence of Smoking and Its Impact on Treatment Outcomes in Newly Diagnosed Pulmonary Tuberculosis Patients: A Hospital-Based Prospective Study. Chonnam Med J. 2015;51(2):86–90. 10.4068/cmj.2015.51.2.86 .
    1. Swaminathan S, Deivanayagam CN, Rajasekaran S, Venkatesan P, Padmapriyadarsini C, Menon PA, et al. Long term follow up of HIV-infected patients with tuberculosis treated with 6-month intermittent short course chemotherapy. Natl Med J India. 2008;21(1):3–8. .
    1. Sharma SK, Soneja M, Prasad KT, Ranjan S. Clinical profile & predictors of poor outcome of adult HIV-tuberculosis patients in a tertiary care centre in north India. Indian J Med Res. 2014;139(1):154–60. .
    1. Das J, Holla A, Das V, Mohanan M, Tabak D, Chan B. In urban and rural India, a standardized patient study showed low levels of provider training and huge quality gaps. Health Aff (Millwood). 2012;31(12):2774–84. 10.1377/hlthaff.2011.1356 .
    1. Floyd K, Arora VK, Murthy KJ, Lonnroth K, Singla N, Akbar Y, et al. Cost and cost-effectiveness of PPM-DOTS for tuberculosis control: evidence from India. Bull World Health Organ. 2006;84(6):437–45. /S0042-96862006000600012. 10.2471/BLT.05.024109 .
    1. McDowell A, Pai M. Alternative medicine: an ethnographic study of how practitioners of Indian medical systems manage TB in Mumbai. Trans R Soc Trop Med Hyg. 2016;110(3):192–8. 10.1093/trstmh/trw009 .
    1. Fox GJ, Barry SE, Britton WJ, Marks GB. Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2013;41(1):140–56. 10.1183/09031936.00070812 .
    1. Kranzer K, Lawn SD, Meyer-Rath G, Vassall A, Raditlhalo E, Govindasamy D, et al. Feasibility, yield, and cost of active tuberculosis case finding linked to a mobile HIV service in Cape Town, South Africa: a cross-sectional study. PLoS Med. 2012;9(8):e1001281 10.1371/journal.pmed.1001281 .
    1. Tiam A, Machekano R, Gounder CR, Maama-Maime LB, Ntene-Sealiete K, Sahu M, et al. Preventing tuberculosis among HIV-infected pregnant women in Lesotho: the case for rolling out active case finding and isoniazid preventive therapy. J Acquir Immune Defic Syndr. 2014;67(1):e5–e11. 10.1097/qai.0000000000000209 .
    1. Silva DR, Muller AM, Tomasini Kda S, Dalcin Pde T, Golub JE, Conde MB. Active case finding of tuberculosis (TB) in an emergency room in a region with high prevalence of TB in Brazil. PLoS ONE. 2014;9(9):e107576 10.1371/journal.pone.0107576 .
    1. Yuen CM, Amanullah F, Dharmadhikari A, Nardell EA, Seddon JA, Vasilyeva I, et al. Turning off the tap: stopping tuberculosis transmission through active case-finding and prompt effective treatment. Lancet. 2015. 10.1016/S0140-6736(15)00322-0
    1. Shah NS, Yuen CM, Heo M, Tolman AW, Becerra MC. Yield of contact investigations in households of patients with drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis. 2014;58(3):381–91. 10.1093/cid/cit643 .
    1. Chadha VK, Praseeja P, Hemanthkumar NK, Shivshankara BA, Sharada MA, Nagendra N, et al. Are registered sputum smear-negative tuberculosis patients in Karnataka, India, diagnosed by national algorithm? Int J Tuberc Lung Dis. 2014;18(12):1491–5. 10.5588/ijtld.14.0216 .
    1. TB Diagnostics Market Analysis Consortium. Market assessment of tuberculosis diagnostics in India in 2013. Int J Tuberc Lung Dis. 2016;20(3):304–13. Appendix Figure A.3. 10.5588/ijtld.15.0571
    1. Onozaki I, Law I, Sismanidis C, Zignol M, Glaziou P, Floyd K. National tuberculosis prevalence surveys in Asia, 1990–2012: an overview of results and lessons learned. Trop Med Int Health. 2015;20(9):1128–45. 10.1111/tmi.12534 .
    1. Arinaminpathy N, Batra D, Khaparde S, Vualnam T, Maheshwari N, Sharma L, et al. The number of privately treated tuberculosis cases in India: an estimation from drug sales data. Lancet Infect Dis. 2016. Epub 2016 Aug 24. 10.1016/S1473-3099(16)30259-6.
    1. Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S, Patil A. Durations and Delays in Care Seeking, Diagnosis and Treatment Initiation in Uncomplicated Pulmonary Tuberculosis Patients in Mumbai, India. PLoS ONE. 2016;11(3):e0152287 10.1371/journal.pone.0152287 .
    1. Jain S, Sankar MM, Sharma N, Singh S, Chugh TD. High prevalence of non-tuberculous mycobacterial disease among non-HIV infected individuals in a TB endemic country—experience from a tertiary center in Delhi, India. Pathog Glob Health. 2014;108(2):118–22. 10.1179/2047773214y.0000000133 .
    1. Atre S, D'Souza B, Dholakia Y, Mistry N. Observations on categorisation of new TB cases: implications for controlling drug resistance. Int J Tuberc Lung Dis. 2007;11(10):1152–53.
    1. Rade K. TB cascade of care final review: discussion on duplicate diagnoses [Internet]. Email message to: Ramnath Subbaraman (ramnath.sub@gmail.com). 2016 March 22–24 [cited 2016 June 8]. [4 paragraphs].
    1. Sreeramareddy CT, Qin ZZ, Satyanarayana S, Subbaraman R, Pai M. Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Int J Tuberc Lung Dis. 2014;18(3):255–66. 10.5588/ijtld.13.0585 .
    1. Charalambous S, Grant AD, Moloi V, Warren R, Day JH, van Helden P, et al. Contribution of reinfection to recurrent tuberculosis in South African gold miners. Int J Tuberc Lung Dis. 2008;12(8):942–8. .
    1. Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med. 2005;171(12):1430–5. 10.1164/rccm.200409-1200OC .

Source: PubMed

3
Abonnere