Toward the Development of a Circulating Free DNA-Based In Vitro Diagnostic Test for Infectious Diseases: a Review of Evidence for Tuberculosis

B Leticia Fernández-Carballo, Tobias Broger, Romain Wyss, Niaz Banaei, Claudia M Denkinger, B Leticia Fernández-Carballo, Tobias Broger, Romain Wyss, Niaz Banaei, Claudia M Denkinger

Abstract

The detection of circulating free DNA (cfDNA) has transformed the field of oncology and prenatal diagnostics. Clinical application of cfDNA for disease diagnosis and monitoring, however, is relatively recent in the field of infectious disease. The potential of cfDNA as a noninvasive diagnostic and monitoring tool is especially promising for tuberculosis (TB), as it enables the detection of both pulmonary and extrapulmonary TB from easily accessible urine and/or blood samples from any age group. However, despite the potential of cfDNA detection to identify TB, very few studies are described in the literature to date. A comprehensive search of the literature identified 15 studies that report detecting Mycobacterium tuberculosis DNA in the blood and urine of TB patients with nongenitourinary disease, but in only six of them were the methodological steps considered suitable for cfDNA isolation and detection. The sensitivities and specificities for the diagnosis of pulmonary and extrapulmonary TB cases reported in these six studies are highly variable, falling in the range of 29% to 79% and 67% to 100%, respectively. While most studies could not meet the performance requirements of the high-priority target product profiles (TPP) published by the World Health Organization (WHO), the study results nonetheless show promise for a point-of-care detection assay. Better designed prospective studies, using appropriate samples, will be required to validate cfDNA as a TB biomarker.

Keywords: Mycobacterium tuberculosis; diagnosis; liquid biopsy.

Copyright © 2019 Fernández-Carballo et al.

Figures

FIG 1
FIG 1
Schematic drawing of the origin, release, and potential diagnostic use of M. tuberculosis cfDNA within the human host. M. tuberculosis within the lungs or in extrapulmonary sites release cell-free DNA into the blood circulation, which then may be redistributed in some other biological fluids that can serve as a sample for in vitro diagnostic (IVD) tests (2, 9, 56–62).
FIG 2
FIG 2
Performance (sensitivity versus specificity) of studies on blood and urine-based cfDNA detection of M. tuberculosis by nucleic acid amplification techniques in which the methodological steps are a priori considered suitable for cfDNA isolation and detection. Studies reporting only the sensitivity or specificity are excluded (23–25, 32–34). TPP, target product profile.

References

    1. Mandel P, Metais P. 1948. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142:241–243.
    1. Weerakoon KG, McManus DP. 2016. Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol 32:378–391. doi:10.1016/j.pt.2016.01.006.
    1. Li Y, Zimmermann B, Rusterholz C, Kang A, Holzgreve W, Hahn S. 2004. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem 50:1002–1011. doi:10.1373/clinchem.2003.029835.
    1. Green C, Huggett JF, Talbot E, Mwaba P, Reither K, Zumla AI. 2009. Rapid diagnosis of tuberculosis through the detection of mycobacterial DNA in urine by nucleic acid amplification methods. Lancet Infect Dis 9:505–511. doi:10.1016/S1473-3099(09)70149-5.
    1. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. 2013. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14:18925–18958. doi:10.3390/ijms140918925.
    1. Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR. 2001. Circulating nucleic acids and apoptosis. Ann N Y Acad Sci 945:239–249.
    1. Gahan PB. 2015. Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring. Springer Netherlands, Dordrecht, the Netherlands.
    1. Volckmar A-L, Sültmann H, Riediger A, Fioretos T, Schirmacher P, Endris V, Stenzinger A, Dietz S. 2018. A field guide for cancer diagnostics using cell-free DNA: from principles to practice and clinical applications. Genes Chromosomes Cancer 57:123–139. doi:10.1002/gcc.22517.
    1. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW, Vogelstein B. 2008. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135:489–498.e7. doi:10.1053/j.gastro.2008.05.039.
    1. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P. 2013. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731. doi:10.1373/clinchem.2013.206359.
    1. Sanmamed MF, Fernández-Landázuri S, Rodríguez C, Zárate R, Lozano MD, Zubiri L, Perez-Gracia JL, Martín-Algarra S, González A. 2015. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem 61:297–304. doi:10.1373/clinchem.2014.230235.
    1. Lo YMD, Chan LYS, Chan ATC, Leung SF, Lo KW, Zhang J, Lee JCK, Hjelm NM, Johnson PJ, Huang DP. 2006. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 906:99–5455. doi:10.1111/j.1749-6632.2000.tb06597.x.
    1. White PL, Barnes RA, Springer J, Klingspor L, Cuenca-Estrella M, Morton CO, Lagrou K, Bretagne S, Melchers WJG, Mengoli C, Donnelly JP, Heinz WJ, Loeffler J. 2015. Clinical performance of aspergillus PCR for testing serum and plasma: A study by the European aspergillus PCR initiative. J Clin Microbiol 53:2832–2837. doi:10.1128/JCM.00905-15.
    1. Waggoner JJ, Balassiano I, Abeynayake J, Sahoo MK, Mohamed-Hadley A, Liu Y, Vital-Braziles JM, Pinsky BA. 2014. Sensitive real-time PCR detection of pathogenic Leptospira spp. and a comparison of nucleic acid amplification methods for the diagnosis of leptospirosis. PLoS One 9:e112356. doi:10.1371/journal.pone.0112356.
    1. World Health Organization. 2017. Global tuberculosis report 2017. World Health Organization, Geneva, Switzerland.
    1. Walzl G, Mcnerney R, de Plessis N, Bates M, McHugh TD, Chegou NN, Zumla A. 2018. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis 18:e119–e210. doi:10.1016/S1473-3099(18)30111-7.
    1. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Hussey GD, Abrahams D, Kafaar F, Hawkridge T, Verver S, Hughes EJ, Ota M, Sutherland J, Howe R, Dockrell HM, Boom WH, Thiel B, Ottenhoff THM, Mayanja-Kizza H, Crampin AC, Downing K, Hatherill M, Valvo J, Shankar S, Parida SK, Kaufmann SHE, Walzl G, Aderem A, Hanekom WA. 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:2312–2322. doi:10.1016/S0140-6736(15)01316-1.
    1. De Groote MA, Sterling DG, Hraha T, Russell TM, Green LS, Wall K, Kraemer S, Ostroff R, Janjic N, Ochsner UA. 2017. Discovery and validation of a six-marker serum protein signature for the diagnosis of active pulmonary tuberculosis. J Clin Microbiol 55:3057–3071. doi:10.1128/JCM.00467-17.
    1. Fauci AS, Eisinger RW. 2018. Reimagining the research approach to tuberculosis†. Am J Trop Med Hyg 98:650–652. doi:10.4269/ajtmh.17-0999.
    1. Ahmed N, Mohanty a. K, Mukhopadhyay U, Batish VK, Grover S. 1998. PCR-based rapid detection of Mycobacterium tuberculosis in blood from immunocompetent patients with pulmonary tuberculosis. J Clin Microbiol 36:3094–3095.
    1. Taci N, Yurdakul AS, Ceyhan I, Berktas MB, Oğretensoy M. 2003. Detection of Mycobacterium tuberculosis DNA from peripheral blood in patients with HIV-seronegative and new cases of smear-positive pulmonary tuberculosis by polymerase chain reaction. Respir Med 97:676–681.
    1. Condos R, McClune A, Rom WN, Schluger NW. 1996. Peripheral-blood-based PCR assay to identify patients with active pulmonary tuberculosis. Lancet 347:1082–1085. doi:10.1016/S0140-6736(96)90281-0.
    1. Ushio R, Yamamoto M, Nakashima K, Watanabe H, Nagai K, Shibata Y, Tashiro K, Tsukahara T, Nagakura H, Horita N, Sato T, Shinkai M, Kudo M, Ueda A, Kaneko T. 2016. Digital PCR assay detection of circulating Mycobacterium tuberculosis DNA in pulmonary tuberculosis patient plasma. Tuberculosis (Edinb) 99:47–53. doi:10.1016/j.tube.2016.04.004.
    1. Click ES, Murithi W, Ouma GS, McCarthy K, Willby M, Musau S, Alexander H, Pevzner E, Posey J, Cain KP. 2018. Detection of apparent cell-free M. tuberculosis DNA from plasma. Sci Rep 8:6–11. doi:10.1038/s41598-017-17683-6.
    1. Cannas A, Goletti D, Girardi E, Chiacchio T, Calvo L, Cuzzi G, Piacentini M, Melkonyan H, Umansky SR, Lauria FN, Ippolito G, Tomei LD. 2008. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuber Lung Dis 12:146–151.
    1. Sechi LA, Pinna MP, Sanna A, Pirina P, Ginesu F, Saba F, Aceti A, Turrini F, Zanetti S, Fadda G. 1997. Detection of Mycobacterium tuberculosis by PCR analysis of urine and other clinical samples from AIDS and non-HIV-infected patients. Mol Cell Probes 11:281–285. doi:10.1006/mcpr.1997.0119.
    1. Aceti A, Zanetti S, Mura MS, Sechi LA, Turrini F, Saba F, Babudieri S, Mannu F, Fadda G. 1999. Identification of HIV patients with active pulmonary tuberculosis using urine based polymerase chain reaction assay. Thorax 54:145–146.
    1. Torrea G, Van De Perre P, Ouedraogo M, Zougba A, Sawadogo A, Dingtoumda B, Diallo B, Defer MC, Sombié I, Zanetti S, Sechi LA. 2005. PCR-based detection of the Mycobacterium tuberculosis complex in urine of HIV-infected and uninfected pulmonary and extrapulmonary tuberculosis patients in Burkina Faso. J Med Microbiol 54:39–44. doi:10.1099/jmm.0.45688-0.
    1. Rebollo MJ, San Juan Garrido R, Folgueira D, Palenque E, Díaz-Pedroche C, Lumbreras C, Aguado JM. 2006. Blood and urine samples as useful sources for the direct detection of tuberculosis by polymerase chain reaction. Diagn Microbiol Infect Dis 56:141–146. doi:10.1016/j.diagmicrobio.2006.03.018.
    1. Gopinath K, Singh S. 2009. Urine as an adjunct specimen for the diagnosis of active pulmonary tuberculosis. Int J Infect Dis 13:374–379. doi:10.1016/j.ijid.2008.07.022.
    1. Kafwabulula M, Ahmed K, Nagatake T, Gotoh J, Mitarai S, Oizumi K, Zumla A. 2002. Evaluation of PCR-based methods for the diagnosis of tuberculosis by identification of mycobacterial DNA in urine samples. Int J Tuber Lung Dis 6:732–737.
    1. Fortún J, Martín-Dávila P, Gómez-Mampaso E, González-García A, Barbolla I, Gómez-García I, Wikman P, Ortíz J, Navas E, Cuartero C, Gijón D, Moreno S. 2014. Extra-pulmonary tuberculosis: Differential aspects and role of 16S-rRNA in urine. Int J Tuber Lung Dis 18:478–485. doi:10.5588/ijtld.13.0555.
    1. Labugger I, Heyckendorf J, Dees S, Häussinger E, Herzmann C, Kohl TA, Richter E, Rivera-Milla E, Lange C. 2017. Detection of transrenal DNA for the diagnosis of pulmonary tuberculosis and treatment monitoring. Infection 45:269–276. doi:10.1007/s15010-016-0955-2.
    1. Patel K, Nagel M, Wesolowski M, Dees S, Rivera-Milla E, Geldmacher C, Dheda K, Hoelscher M, Labugger I. 2018. Evaluation of a urine-based rapid molecular diagnostic test with potential to be used at point-of-care for pulmonary tuberculosis: Cape Town cohort. J Mol Diagnostics 20:215–224. doi:10.1016/j.jmoldx.2017.11.005.
    1. Newcombe RG. 1998. Two-sided confidence intervals for the single proposition: comparison of seven methods. Stat Med 17:857–872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>;2-E.
    1. World Health Organization. 2014. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. World Health Organization, Geneva, Switzerland.
    1. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. 2013. Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta 424:222–230. doi:10.1016/j.cca.2013.05.022.
    1. Peter J, Green C, Hoelscher M, Mwaba P, Zumla A, Dheda K. 2010. Urine for the diagnosis of tuberculosis: current approaches, clinical applicability, and new developments. Curr Opin Pulm Med 16:262–270. doi:10.1097/MCP.0b013e328337f23a.
    1. Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM, Sherman DR. 2018. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev 31:e00021-18. doi:10.1128/CMR.00021-18.
    1. Madej RM, Davis J, Holden MJ, Kwang S, Labourier E, Schneider GJ. 2010. International standards and reference materials for quantitative molecular infectious disease testing. J Mol Diagn 12:133–143. doi:10.2353/jmoldx.2010.090067.
    1. Gardiner JL, Karp CL. 2015. Transformative tools for tackling tuberculosis. J Exp Med 212:1759–1769. doi:10.1084/jem.20151468.
    1. Burnham P, Dadhania D, Heyang M, Chen F, Westblade LF, Suthanthiran M, Lee JR, De Vlaminck I. 2018. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun 9:2412. doi:10.1038/s41467-018-04745-0.
    1. Jung K, Fleischhacker M, Rabien A. 2010. Cell-free DNA in the blood as a solid tumor biomarker-A critical appraisal of the literature. Clin Chim Acta 411:1611–1624. doi:10.1016/j.cca.2010.07.032.
    1. Swarup V, Rajeswari MR. 2007. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581:795–799. doi:10.1016/j.febslet.2007.01.051.
    1. Wagner J. 2012. Free DNA—new potential analyte in clinical laboratory diagnostics? Biochem Med 22:24–38. doi:10.11613/BM.2012.004.
    1. Chan KCA, Yeung S-W, Lui W-B, Rainer TH, Lo YMD. 2005. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem 51:781–784. doi:10.1373/clinchem.2004.046219.
    1. Devonshire AS, Whale AS, Gutteridge A, Jones G, Cowen S, Foy CA, Huggett JF. 2014. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 406:6499–6512. doi:10.1007/s00216-014-7835-3.
    1. Page K, Guttery DS, Zahra N, Primrose L, Elshaw SR, Pringle JH, Blighe K, Marchese SD, Hills A, Woodley L, Stebbing J, Coombes RC, Shaw JA. 2013. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One 8:2–11.
    1. Xue X, Teare MD, Holen I, Zhu YM, Woll PJ. 2009. Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clin Chim Acta 404:100–104. doi:10.1016/j.cca.2009.02.018.
    1. Umansky SR, Tomei LD. 2006. Transrenal DNA testing: progress and perspectives. Expert Rev Mol Diagn 6:153–163. doi:10.1586/14737159.6.2.153.
    1. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. 2014. Isothermal amplified detection of DNA and RNA. Mol Biosyst 10:970–1003. doi:10.1039/c3mb70304e.
    1. Purcell RV, Pearson J, Frizelle FA, Keenan JI. 2016. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis. Sci Rep 6:34554. doi:10.1038/srep34554.
    1. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442. doi:10.1126/science.aam9321.
    1. Chertow DS. 2018. Next-generation diagnostics with CRISPR. Science 360:381–382. doi:10.1126/science.aat4982.
    1. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439. doi:10.1126/science.aar6245.
    1. Jiang WW, Masayesva B, Zahurak M, Carvalho AL, Rosenbaum E, Mambo E, Zhou S, Minhas K, Benoit N, Westra WH, Alberg A, Sidransky D, Koch W, Califano J. 2005. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin Cancer Res 11:2486–2491. doi:10.1158/1078-0432.CCR-04-2147.
    1. Su YH, Wang M, Brenner DE, Ng A, Melkonyan H, Umansky S, Syngal S, Block TM. 2004. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be used in the detection of colorectal cancer. J Mol Diagn 6:101–107. doi:10.1016/S1525-1578(10)60497-7.
    1. Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, Ananev V, Bazin I, Garin A, Narimanov M, Knysh V, Melkonyan H, Umansky S, Lichtenstein A. 2000. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46:1078–1084.
    1. van der Drift MA, Prinsen CFM, Hol BEA, Bolijn AS, Jeunink MAF, Dekhuijzen PNR, Thunnissen FBJM. 2008. Can free DNA be detected in sputum of lung cancer patients? Lung Cancer 61:385–390. doi:10.1016/j.lungcan.2008.01.007.
    1. Pajek J, Kveder R, Guček A, Škoberne A, Bren A, Bučar M, Černe D, Lukač-Bajalo J. 2010. Cell-free DNA in the peritoneal effluent of peritoneal dialysis solutions. Ther Apher Dial 14:20–26. doi:10.1111/j.1744-9987.2009.00717.x.
    1. Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, Ptak J, Brem H, Chaichana K, Gallia GL, Gokaslan ZL, Groves ML, Jallo GI, Lim M, Olivi A, Quinones-Hinojosa A, Rigamonti D, Riggins GJ, Sciubba DM, Weingart JD, Wolinsky J-P, Ye X, Oba-Shinjo SM, Marie SKN, Holdhoff M, Agrawal N, Diaz LA, Papadopoulos N, Kinzler KW, Vogelstein B, Bettegowda C. 2015. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 112:9704–9709. doi:10.1073/pnas.1511694112.
    1. Wu D, Chi H, Shao M, Wu Y, Jin H, Wu B, Qiao J. 2014. Prenatal diagnosis of Down syndrome using cell-free fetal DNA in amniotic fluid by quantitative fluorescent polymersase chain reaction. Chin Med J (Engl) 127:1897–1901.
    1. Yamamoto M, Ushio R, Watanabe H, Tachibana T, Tanaka M, Yokose T, Tsukiji J, Nakajima H, Kaneko T. 2018. Detection of Mycobacterium tuberculosis-derived DNA in circulating cell-free DNA from a patient with disseminated infection with digital PCR. Int J Infect Dis 66:80–82. doi:10.1016/j.ijid.2017.11.018.
    1. Petrucci R, Lombardi G, Corsini I, Visciotti F, Pirodda A, Cazzato S, Landini MP, Dal Monte P. 2015. Use of transrenal DNA for the diagnosis of extrapulmonary tuberculosis in children: a case of tubercular otitis media. J Clin Microbiol 53:336–338. doi:10.1128/JCM.02548-14.

Source: PubMed

3
Abonnere