Design and Rationale of the Global Phase 3 NEURO-TTRansform Study of Antisense Oligonucleotide AKCEA-TTR-LRx (ION-682884-CS3) in Hereditary Transthyretin-Mediated Amyloid Polyneuropathy

Teresa Coelho, Yukio Ando, Merrill D Benson, John L Berk, Márcia Waddington-Cruz, Peter J Dyck, Julian D Gillmore, Sami L Khella, William J Litchy, Laura Obici, Cecilia Monteiro, Li-Jung Tai, Nicholas J Viney, Gustavo Buchele, Michela Brambatti, Shiangtung W Jung, Louis St L O'Dea, Sotirios Tsimikas, Eugene Schneider, Richard S Geary, Brett P Monia, Morie Gertz, Teresa Coelho, Yukio Ando, Merrill D Benson, John L Berk, Márcia Waddington-Cruz, Peter J Dyck, Julian D Gillmore, Sami L Khella, William J Litchy, Laura Obici, Cecilia Monteiro, Li-Jung Tai, Nicholas J Viney, Gustavo Buchele, Michela Brambatti, Shiangtung W Jung, Louis St L O'Dea, Sotirios Tsimikas, Eugene Schneider, Richard S Geary, Brett P Monia, Morie Gertz

Abstract

Introduction: AKCEA-TTR-LRx is a ligand-conjugated antisense (LICA) drug in development for the treatment of hereditary transthyretin amyloidosis (hATTR), a fatal disease caused by mutations in the transthyretin (TTR) gene. AKCEA-TTR-LRx shares the same nucleotide sequence as inotersen, an antisense medicine approved for use in hATTR polyneuropathy (hATTR-PN). Unlike inotersen, AKCEA-TTR-LRx is conjugated to a triantennary N-acetylgalactosamine moiety that supports receptor-mediated uptake by hepatocytes, the primary source of circulating TTR. This advanced design increases drug potency to allow for lower and less frequent dosing. The NEURO-TTRansform study will investigate whether AKCEA-TTR-LRx is safe and efficacious, with the aim of improving neurologic function and quality of life in hATTR-PN patients.

Methods/design: Approximately 140 adults with stage 1 (independent ambulation) or 2 (requires ambulatory support) hATTR-PN are anticipated to enroll in this multicenter, open-label, randomized, phase 3 study. Patients will be assigned 6:1 to AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks or inotersen 300 mg once weekly until the prespecified week 35 interim efficacy analysis, after which patients receiving inotersen will receive AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks. All patients will then receive AKCEA-TTR-LRx through the remainder of the study treatment period. The final efficacy analysis at week 66 will compare the AKCEA-TTR-LRx arm with the historical placebo arm from the phase 3 trial of inotersen (NEURO-TTR). The primary outcome measures are between-group differences in the change from baseline in serum TTR, modified Neuropathy Impairment Score + 7, and Norfolk Quality of Life-Diabetic Neuropathy questionnaire.

Conclusion: NEURO-TTRansform is designed to determine whether targeted delivery of AKCEA-TTR-LRx to hepatocytes with lower and less frequent doses will translate into clinical and quality-of-life benefits for patients with hATTR-PN.

Trial registration: The study is registered at ClinicalTrials.gov (NCT04136184) and EudraCT (2019-001698-10).

Keywords: AKCEA-TTR-Lrx; Antisense oligonucleotide; Clinical trial design; Hereditary transthyretin-mediated amyloid polyneuropathy; Phase 3 clinical trial.

Figures

Fig. 1
Fig. 1
ASGPR mediates the uptake of the GalNAc3-conjugated ASO AKCEA-TTR-LRx by hepatocytes, where it binds to the TTR mRNA through Watson–Crick hybridization and prevents production of TTR protein via RNase H1-mediated degradation of the target TTR mRNA. ASGPR asialoglycoprotein receptor, ASO antisense oligonucleotide, DNA deoxyribonucleic acid, mRNA messenger ribonucleic acid, RNase ribonuclease, TTR transthyretin
Fig. 2
Fig. 2
NEURO-TTRansform study design. EOT end of treatment, hATTR-PN hereditary transthyretin-mediated amyloid polyneuropathy, SC subcutaneously. aThe screening period is ≤ 6 weeks (or ≤ 10 weeks if genetic testing is required). bConcomitant therapy with tafamidis or off-label use of diflunisal is not allowed. Doxycycline use for the indication of infection (< 15 days) is allowed. cPatients not participating in the open-label extension will enter a 20-week post-treatment evaluation after completing EOT assessments. dPlacebo arm of the NEURO-TTR study (NCT01737398)
Fig. 3
Fig. 3
NEURO-TTRansform study endpoints. 10MWT 10-min walk test, COMPASS-31 Composite Autonomic Symptom Score-31, ECHO echocardiogram, EQ-5D-5L 5-level EuroQol 5-dimension, EOT end of treatment, mBMI modified body mass index, mNIS + 7 modified Neuropathy Impairment Score + 7, Norfolk QOL-DN Norfolk Quality of Life Questionnaire—Diabetic Neuropathy, NSC Neuropathy Symptom and Change, NT-proBNP N-terminal pro-brain natriuretic peptide, PCS Physical Component Summary, PND Polyneuropathy Disability Score, R-ODS Rasch-built Overall Disability Score, SC subcutaneously, SF-36 36-Item Short-Form Health Survey, TTR transthyretin. aPercentage change. bThe mNIS + 7 assessment procedure includes: Neuropathy Impairment Score, quantitative sensory testing, heart rate response to deep breathing, and predetermined sensory and nerve conduction testing. Additional clinical evaluations done during mNIS + 7 assessment include: lower limbs function test and NSC. cweeks 35 and 66. dweek 65. eweek 37. fweek 35. gweek 81. hVital signs, body weight, physical examination, clinical laboratory tests, electrocardiogram, use of concomitant medication, thyroid panel, inflammatory panel, coagulation, immunogenicity test
Fig. 4
Fig. 4
Key inclusion and exclusion criteria for the NEURO-TTRansform study. ASO antisense oligonucleotide, eGFR estimated glomerular filtration rate, FAP familial amyloid polyneuropathy, hATTR-PN hereditary transthyretin-mediated amyloid polyneuropathy, NIS Neuropathy Impairment Score, NYHA New York Heart Association, siRNA small interfering ribonucleic acid, TTR transthyretin, UPCR urine protein/creatinine ratio. aStage 1 (ambulatory without assistance) or stage 2 (ambulatory with assistance). bIn the event of UPCR ≥ 1000 mg/g, eligibility may be confirmed by a repeat random urine test with UPCR < 1000 mg/g or a quantitative total urine protein measurement of < 1000 mg/24 h. cChronic Kidney Disease Epidemiology Collaboration equation 1 formula

References

    1. Ando Y, Coelho T, Berk JL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis. 2013;8:31. doi: 10.1186/1750-1172-8-31.
    1. Planté-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–1097. doi: 10.1016/S1474-4422(11)70246-0.
    1. Gonzalez-Duarte A, Valdés-Ferrer SI, Cantú-Brito C. Characteristics and natural history of autonomic involvement in hereditary ATTR amyloidosis: a systematic review. Clin Auton Res. 2019;29(Suppl 1):1–9. doi: 10.1007/s10286-019-00630-y.
    1. Yarlas A, Gertz MA, Dasgupta NR, et al. Burden of hereditary transthyretin amyloidosis on quality of life. Muscle Nerve. 2019;60:169–175. doi: 10.1002/mus.26515.
    1. Quintas A, Vaz DC, Cardoso I, Saraiva MJ, Brito RM. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem. 2001;276:27207–27213. doi: 10.1074/jbc.M101024200.
    1. Hammarström P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci USA. 2002;99(Suppl 4):16427–16432. doi: 10.1073/pnas.202495199.
    1. Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. 2012;421:185–203. doi: 10.1016/j.jmb.2011.12.060.
    1. Foss TR, Wiseman RL, Kelly JW. The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry. 2005;44:15525–15533. doi: 10.1021/bi051608t.
    1. Mariani LL, Lozeron P, Théaudin M, et al. Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol. 2015;78:901–916. doi: 10.1002/ana.24519.
    1. Santos D, Coelho T, Alves-Ferreira M, et al. Large normal alleles of ATXN2 decrease age at onset in transthyretin familial amyloid polyneuropathy Val30Met patients. Ann Neurol. 2019;85:251–258. doi: 10.1002/ana.25409.
    1. Waddington-Cruz M, Schmidt H, Botteman MF, et al. Epidemiological and clinical characteristics of symptomatic hereditary transthyretin amyloid polyneuropathy: a global case series. Orphanet J Rare Dis. 2019;14:34. doi: 10.1186/s13023-019-1000-1.
    1. Adams D, Cauquil C, Labeyrie C. Familial amyloid polyneuropathy. Curr Opin Neurol. 2017;30:481–489. doi: 10.1097/WCO.0000000000000476.
    1. Lemos C, Coelho T, Alves-Ferreira M, et al. Overcoming artefact: anticipation in 284 Portuguese kindreds with familial amyloid polyneuropathy (FAP) ATTRV30M. J Neurol Neurosurg Psychiatry. 2014;85:326–330. doi: 10.1136/jnnp-2013-305383.
    1. Schmidt HH, Waddington-Cruz M, Botteman MF, et al. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy. Muscle Nerve. 2018;57:829–837. doi: 10.1002/mus.26034.
    1. Adams D, Ando Y, Beirão JM, et al. Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy. J Neurol. 2020 doi: 10.1007/s00415-019-09688-0.
    1. Coelho T, Inês M, Conceição I, Soares M, de Carvalho M, Costa J. Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology. 2018;91:e1999–e2009. doi: 10.1212/WNL.0000000000006543.
    1. European Medicines Agency. Vyndaqel (tafamidis) 20 mg soft capsules. Summary of product characteristics. 2020. . Accessed 30 Mar 2020.
    1. Pharmaceuticals and Medical Devices Agency. Vyndaqel (tafamidis) capsules 20 mg. Review report. 2019. . Accessed 8 Jun 2020.
    1. Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–792. doi: 10.1212/WNL.0b013e3182661eb1.
    1. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–2667. doi: 10.1001/jama.2013.283815.
    1. Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther. 2019;13:1515–1525. doi: 10.2147/DDDT.S162913.
    1. European Medicines Agency. Onpattro (patisiran) 2 mg/mL concentrate for solution for infusion. Summary of product characteristics. 2019. . Accessed 30 Mar 2020.
    1. Alnylam Pharmaceuticals Inc. Onpattro (patisiran) lipid complex injection for intravenous use. Full prescribing information. 2018. . Accessed 30 Mar 2020.
    1. European Medicines Agency. Tegsedi (inotersen) 284 mg solution for injection in pre-filled syringe. Summary of product characteristics. 2020. . Accessed 30 Mar 2020.
    1. Akcea Therapeutics Inc. Tegsedi (inotersen) injection for subcutaneous use. Full prescribing information. 2018. . Accessed 30 Mar 2020.
    1. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31. doi: 10.1056/NEJMoa1716793.
    1. Crooke ST, Baker BF, Xia S, et al. Integrated assessment of the clinical performance of GalNAc3-conjugated 2'-O-methoxyethyl chimeric antisense oligonucleotides: I. Human volunteer experience. Nucleic Acid Ther. 2019;29:16–32. doi: 10.1089/nat.2018.0753.
    1. Prakash TP, Graham MJ, Yu J, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014;42:8796–8807. doi: 10.1093/nar/gku531.
    1. Viney NJ, Guo S, Tai L-J, et al. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail. 2020;8(1):652–661. doi: 10.1002/ehf2.13154.
    1. Ackermann EJ, Guo S, Benson MD, et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid. 2016;23:148–157. doi: 10.1080/13506129.2016.1191458.
    1. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3:692–694. doi: 10.1111/j.1538-7836.2005.01204.x.
    1. Cohn DM, Viney NJ, Fijen LM, et al. Antisense inhibition of prekallikrein to control hereditary angioedema. N Engl J Med. 2020;383:1242–1247. doi: 10.1056/NEJMoa1915035.
    1. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382:244–255. doi: 10.1056/NEJMoa1905239.
    1. Viney NJ, van Capelleveen JC, Geary RS, et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet. 2016;388:2239–2253. doi: 10.1016/S0140-6736(16)31009-1.
    1. Dyck PJB, González-Duarte A, Obici L, et al. Development of measures of polyneuropathy impairment in hATTR amyloidosis: from NIS to mNIS + 7. J Neurol Sci. 2019;405:116424. doi: 10.1016/j.jns.2019.116424.
    1. US Food and Drug Administration. Dolobid (diflunisal). Prescribing information. 2007. . Accessed 8 Jun 2020.

Source: PubMed

3
Abonnere