Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

Alberto Porta, Vlasta Bari, Andrea Marchi, Beatrice De Maria, Dirk Cysarz, Peter Van Leeuwen, Anielle C M Takahashi, Aparecida M Catai, Tomaso Gnecchi-Ruscone, Alberto Porta, Vlasta Bari, Andrea Marchi, Beatrice De Maria, Dirk Cysarz, Peter Van Leeuwen, Anielle C M Takahashi, Aparecida M Catai, Tomaso Gnecchi-Ruscone

Abstract

Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales.

Keywords: autonomic nervous system; cardiovascular control; gestational age; head-up tilt; heart rate variability; local prediction; multiscale analysis; time irreversibility.

Figures

Figure 1
Figure 1
The bargraphs show the percentage of fetuses exhibiting nonlinear dynamics, NL%, as detected by the NV%-based time irreversibility (A) and UPI-based local prediction (B) analyses as a function of the period of gestation (i.e., PoG1, PoG2, and PoG3).
Figure 2
Figure 2
The bargraphs show the percentage of healthy humans exhibiting nonlinear dynamics, NL%, as detected by the NV%-based time irreversibility (A) and UPI-based local prediction (B) analyses as a function of the tilt table inclination during graded T-test (i.e., R, T15, T30, T45, T60, T75, and T90).

References

    1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger R. D., Cohen R. J. (1981). Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–223. 10.1126/science.6166045
    1. Casali K. R., Casali A. G., Montano N., Irigoyen M. C., Macagnan F., Guzzetti S., et al. . (2008). Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys. Rev. E 77:066204. 10.1103/PhysRevE.77.066204
    1. Catai A. M., Takahashi A. C. M., Perseguini N. M., Milan J. C., Minatel V., Rehder-Santos P., et al. (2014). Effect of the postural challenge on the dependence of the cardiovascular control complexity on age. Entropy 16, 6686–6704 10.3390/e16126686
    1. Cohen M. A., Taylor J. A. (2002). Short-term cardiovascular oscillations in man: measuring and modeling the physiologies. J. Physiol. 542, 669–683. 10.1113/jphysiol.2002.017483
    1. Cooke W. H., Hoag J. B., Crossman A. A., Kuusela T. A., Tahvanainen K. U. O., Eckberg D. L. (1999). Human responses to upright tilt: a window on central autonomic integration. J. Physiol. 517, 617–628.
    1. Ehlers C. L., Havstad J., Prichard D., Theiler J. (1998). Low doses of ethanol reduce evidence for non linear structure in brain activity. J. Neurosci. 18, 7474–7486.
    1. Farmer J. D., Sidorowich J. J. (1987). Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848.
    1. Fortrat J. O., Yamamoto Y., Hughson R. L. (1997). Respiratory influences on non-linear dynamics of heart rate variability in humans. Biol. Cybern. 77, 1–10. 10.1007/s004220050361
    1. Furlan R., Porta A., Costa F., Tank J., Baker L., Schiavi R., et al. . (2000). Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101, 886–892. 10.1161/01.CIR.101.8.886
    1. Guzik P., Piskorski J., Krauze T., Wykretowicz A., Wysocki H. (2006). Heart rate asymmetry by Poincaré plots of RR intervals. Biomed. Tech. 51, 272–275. 10.1515/BMT.2006.054
    1. Kanters K., Hojgaard M. V., Agner E., Holstein-Rathlou N.-H. (1996). Short- and long-term variations in non-linear dynamics of heart rate variability. Cardiovasc. Res. 31, 400–409.
    1. Kanters K., Hojgaard M. V., Agner E., Holstein-Rathlou N.-H. (1997). Influence of forced respiration on nonlinear dynamics in heart rate variability. Am. J. Physiol. 272, R1149–R1154.
    1. Kantz H., Schreiber T. (1997). Nonlinear Time Series Analysis. Cambridge, UK: Cambridge University Press.
    1. Koepchen H. P. (1991). Physiology of rhythms and control systems: an integrative approach, in Rhythms in Physiological Systems, eds Haken H., Koepchen H. P. (Berlin: Springer-Verlag; ), 3–20.
    1. Lange S., van Leeuwen P., Geue D., Hatzmann W., Gronemeyer D. (2005). Influence of gestational age, heart rate, gender and time of the day on fetal heart rate variability. Med. Biol. Eng. Comput. 43, 481–486. 10.1007/BF02344729
    1. Maestri R., Pinna G. D., Accardo A., Allegrini P., Balocchi R., D'Addio G., et al. . (2007). Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 18, 425–433. 10.1111/j.1540-8167.2007.00728.x
    1. Magagnin V., Bassani T., Bari V., Turiel M., Maestri R., Pinna G. D., et al. . (2011). Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indexes. Physiol. Meas. 32, 1775–1786. 10.1088/0967-3334/32/11/S05
    1. Montano N., Gnecchi-Ruscone T., Porta A., Lombardi F., Pagani M., Malliani M. (1994). Power spectrum analysis of heart rate variability to assess the changes in sympatho-vagal balance during graded orthostatic tilt. Circulation 90, 1826–1831. 10.1161/01.cir.90.4.1826
    1. Nemati S., Edwards B. A., Lee J., Pittman-Polletta B., Butler J. P., Malhotra A. (2013). Respiration and heart rate complexity: effects of age and gender assessed by band-limited transfer entropy. Respir. Physiol. Neurobiol. 189, 27–33. 10.1016/j.resp.2013.06.016
    1. Papp J. G. (1988). Autonomic responses and neurohumoral control in the human early antenatal heart. Basic Res. Cardiol. 83, 2–9. 10.1007/BF01907099
    1. Porta A., Baselli G., Guzzetti S., Pagani M., Malliani A., Cerutti S. (2000). Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans. Biomed. Eng. 47, 1555–1964. 10.1109/10.887936
    1. Porta A., Casali K. R., Casali A. G., Gnecchi-Ruscone T., Tobaldini E., Montano N., et al. . (2008). Temporal asymmetries of short-term heart period variability are linked to autonomic modulation. Am. J. Physiol. 295, R550–R557. 10.1152/ajpregu.00129.2008
    1. Porta A., Catai A. M., Takahashi A. C. M., Magagnin V., Bassani T., Tobaldini E., et al. . (2011). Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. Am. J. Physiol. 300, R378–R386. 10.1152/ajpregu.00553.2010
    1. Porta A., Faes L., Bari V., Marchi A., Bassani T., Nollo G., et al. . (2014). Effect of age on complexity and causality of the cardiovascular control: comparison between model-based and model-free approaches. PLoS ONE 9:e89463. 10.1371/journal.pone.0089463
    1. Porta A., Guzzetti S., Furlan R., Gnecchi-Ruscone T., Montano N., Malliani A. (2007a). Complexity and non linearity in short-term heart period variability: comparison of methods based on local non linear prediction. IEEE Trans. Biomed. Eng. 54, 94–106. 10.1109/TBME.2006.883789
    1. Porta A., Tobaldini E., Guzzetti S., Furlan R., Montano N., Gnecchi-Ruscone T. (2007b). Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am. J. Physiol. 293, H702–H708. 10.1152/ajpheart.00006.2007
    1. Ryan S. M., Goldberger A. L., Pincus S. M., Mietus J., Lipsitz L. A. (1994). Gender- and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Card. 24, 1700–1707. 10.1016/0735-1097(94)90177-5
    1. Schreiber T., Schmitz A. (2000). Surrogate time series. Physica D 142, 346–382 10.1016/S0167-2789(00)00043-9
    1. Sugihara G., Allan W., Sobel D., Allan K. D. (1996). Nonlinear control of heart rate variability in humans infants. Proc. Natl. Acad. Sci. U.S.A. 93, 2608–2613. 10.1073/pnas.93.6.2608
    1. Sugihara G., May R. M. (1990). Non linear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741.
    1. Takens F. (1981). Detecting strange attractors in fluid turbulence, in Lecture Notes in Mathematics, eds Rand D., Young L. S. (Berlin: Springer; ), 366–381.
    1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability - standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065. 10.1161/01.CIR.93.5.1043
    1. Theiler J. (1986). Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34, 2427–2432. 10.1103/PhysRevA.34.2427
    1. Theiler J., Eubank S., Longtin A., Galdrikian J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94.
    1. van Leeuwen P., Geue D., Lange S., Hatzmann W., Gronemeyer D. (2003). Changes in the frequency power spectrum of fetal heart rate in the course of pregnancy. Prenat. Diagn. 23, 909–916. 10.1002/pd.723
    1. Voss A., Heitmann A., Schroeder R., Peters A., Perz S. (2012). Short-term heart rate variability – age dependence in healthy subjects. Physiol. Meas. 33, 1289–1311. 10.1088/0967-3334/33/8/1289
    1. Voss A., Kurths J., Kleiner H. J., Witt A., Wessel N., Saparin P., et al. . (1996). The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 31, 419–433. 10.1016/0008-6363(96)00008-9
    1. Weiss G. (1975). Time-reversibility of linear stochastic processes. J. Appl. Prob. 12, 831–836 10.2307/3212735
    1. Wessel N., Ziehmann C., Kurths J., Meyerfeldt U., Schirdewan A., Voss A. (2000). Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys. Rev. E 61, 733–739. 10.1103/PhysRevE.61.733

Source: PubMed

3
Abonnere