ALICE: a randomized placebo-controlled phase II study evaluating atezolizumab combined with immunogenic chemotherapy in patients with metastatic triple-negative breast cancer

J A Kyte, A Røssevold, R S Falk, B Naume, J A Kyte, A Røssevold, R S Falk, B Naume

Abstract

Background: Immunotherapy with checkpoint inhibitors (CI) represents an important novel development in cancer treatment. Metastatic triple-negative breast cancer (mTNBC) is incurable, with a median survival of only ~ 13 months. We have initiated the randomized placebo-controlled phase IIb study ALICE, evaluating PD-L1 blockade combined with immunogenic chemotherapy in mTNBC patients (n = 75). Intriguingly, the host immune response is strongly predictive for the effect of chemotherapy in mTNBC. In the ALICE trial, we release the brake on the immune response by use of atezolizumab, an inhibitory antibody against PD-L1. We utilize anthracyclines, shown to trigger the immune system, and low-dose cyclophosphamide, which has been reported to counter immunosuppressive cells.

Methods: ALICE is a randomized, double-blind, placebo-controlled exploratory phase II study evaluating the safety and efficacy of atezolizumab when combined with immunogenic chemotherapy in subjects with mTNBC. The trial will enroll 75 evaluable subjects, randomized 2:3 into two arms (A:B). The patients receive identical chemotherapy, i.e. pegylated liposomal doxorubicin (PLD 20 mg/m2 intravenously every 2nd week) + cyclophosphamide (50 mg per day, first 2 weeks in each 4 week cycle). Patients in arm A receive placebo, while patients in arm B receive atezolizumab. The primary objectives are assessment of toxicity and progression-free survival. The secondary objectives include overall survival, tumor response rate, clinical benefit rate, patient reported outcomes, biomarkers and assessment of tumor-immune evolution during therapy.

Discussion: The question of how CI should be combined with chemotherapy, is a key challenge facing the field. There is a strong preclinical rationale for exploring if anthracyclines, which are considered to induce immunogenic cell death, synergize with PD-L1 blockade, and if low-dose cyclophosphamide counters tumor tolerance. However, the data from patients is as yet very limited, and the clinical evaluation of these hypotheses is among the key objectives in the ALICE trial. The study includes extensive biobanking and translational sub-projects, also addressing other clinically important questions. These analyses may uncover mechanisms of drug efficacy or tumor resistance, and identify biomarkers allowing personalized therapy. If the trial suggests acceptable safety of the ALICE therapy and provide a signal of clinical efficacy, further studies are warranted. Trial registration NCT03164993, May 24th 2017; https://ichgcp.net/clinical-trials-registry/NCT03164993.

Keywords: Anthracycline; Breast cancer; Checkpoint inhibitor; Cyclophosphamide; Immunogenic cell death; Immunotherapy; PD-1; PD-L1; Triple negative.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Bianchini G, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–690. doi: 10.1038/nrclinonc.2016.66.
    1. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030.
    1. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348.
    1. Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867. doi: 10.1056/NEJMoa1602252.
    1. Schmid P, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–2121. doi: 10.1056/NEJMoa1809615.
    1. Schmid P, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59. doi: 10.1016/S1470-2045(19)30689-8.
    1. Pfirschke C, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–354. doi: 10.1016/j.immuni.2015.11.024.
    1. Kroemer G, et al. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21(10):1128–1138. doi: 10.1038/nm.3944.
    1. Bezu L, et al. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015;6:187.
    1. Sistigu A, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301–1309. doi: 10.1038/nm.3708.
    1. Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–1059. doi: 10.1038/nm1622.
    1. Ghiringhelli F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641–648. doi: 10.1007/s00262-006-0225-8.
    1. Voorwerk L, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25(6):920–928. doi: 10.1038/s41591-019-0432-4.
    1. Schmid P, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–821. doi: 10.1056/NEJMoa1910549.
    1. Munzone E, Colleoni M. Clinical overview of metronomic chemotherapy in breast cancer. Nat Rev Clin Oncol. 2015;12(11):631–644. doi: 10.1038/nrclinonc.2015.131.
    1. Zhao M, et al. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice. J Zhejiang Univ Sci B. 2017;18(1):15–26. doi: 10.1631/jzus.B1600303.
    1. Jehn CF, et al. Biweekly pegylated liposomal doxorubicin (Caelyx) in heavily pretreated metastatic breast cancer: a phase 2 study. Clin Breast Cancer. 2016;16(6):514–519. doi: 10.1016/j.clbc.2016.06.001.
    1. Rossi D, et al. Neoadjuvant chemotherapy with low dose of pegylated liposomal doxorubicin plus weekly paclitaxel in operable and locally advanced breast cancer. Anticancer Drugs. 2008;19(7):733–737. doi: 10.1097/CAD.0b013e3283043585.
    1. Dellapasqua S, et al. Pegylated liposomal doxorubicin in combination with low-dose metronomic cyclophosphamide as preoperative treatment for patients with locally advanced breast cancer. Breast. 2011;20(4):319–323. doi: 10.1016/j.breast.2011.02.014.
    1. Rau KM, et al. Pegylated liposomal doxorubicin (Lipo-Dox(R)) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: an open-label, multi-center, non-comparative phase II study. BMC Cancer. 2015;15:423. doi: 10.1186/s12885-015-1433-4.

Source: PubMed

3
Abonnere