Traffic-related atmospheric pollutants levels during pregnancy and offspring's term birth weight: a study relying on a land-use regression exposure model

Rémy Slama, Verena Morgenstern, Josef Cyrys, Anne Zutavern, Olf Herbarth, Heinz-Erich Wichmann, Joachim Heinrich, LISA Study Group, Rémy Slama, Verena Morgenstern, Josef Cyrys, Anne Zutavern, Olf Herbarth, Heinz-Erich Wichmann, Joachim Heinrich, LISA Study Group

Abstract

Background: Some studies have suggested that particulate matter (PM) levels during pregnancy may be associated with birth weight. Road traffic is a major source of fine PM (PM with aero-dynamic diameter < 2.5 microm; PM(2.5)).

Objective: We determined to characterize the influence of maternal exposure to atmospheric pollutants due to road traffic and urban activities on offspring term birth weight.

Methods: Women from a birth cohort [the LISA (Influences of Lifestyle Related Factors on the Human Immune System and Development of Allergies in Children) cohort] who delivered a non-premature baby with a birth weight > 2,500 g in Munich metropolitan area were included. We assessed PM(2.5), PM(2.5) absorbance (which depends on the blackness of PM(2.5), a marker of traffic-related air pollution), and nitrogen dioxide levels using a land-use regression model, taking into account the type and length of roads, population density, land coverage around the home address, and temporal variations in pollution during pregnancy. Using Poisson regression, we estimated prevalence ratios (PR) of birth weight < 3,000 g, adjusted for gestational duration, sex, maternal smoking, height, weight, and education.

Results: Exposure was defined for 1,016 births. Taking the lowest quartile of exposure during pregnancy as a reference, the PR of birth weight < 3,000 g associated with the highest quartile was 1.7 for PM(2.5) [95% confidence interval (CI), 1.2-2.7], 1.8 for PM(2.5) absorbance (95% CI, 1.1-2.7), and 1.2 for NO(2) (95% CI, 0.7-1.7). The PR associated with an increase of 1 microg/m(3) in PM(2.5) levels was 1.13 (95% CI, 1.00-1.29).

Conclusion: Increases in PM(2.5) levels and PM(2.5) absorbance were associated with decreases in term birth weight. Traffic-related air pollutants may have adverse effects on birth weight.

Keywords: atmospheric pollution; birth weight; diesel soot; environment; geographic information system; intrauterine growth restriction; particulate matter; pregnancy; reproduction; road traffic; sensitivity analysis.

Figures

Figure 1
Figure 1
Map of the study area indicating (A) the location of the 40 TRAPCA measurement sites and of Johanneskirchen fixed air quality monitoring station (used to seasonalize the exposure model), and (B,C,D) the home addresses of the women during pregnancy and the estimated exposure levels (pregnancy averages). (B) PM2.5 levels; (C) PM2.5 absorbance; (D) NO2 levels. To improve readability, the study area furthest from the city center was not represented.
Figure 2
Figure 2
Adjusted PRs of birth weight 2.5 pregnancy average, in the whole population and in the subgroup in which PM2.5 absorbance is below the median value.

References

    1. Albuquerque CA, Smith KR, Johnson C, Chao R, Harding R. Influence of maternal tobacco smoking during pregnancy on uterine, umbilical and fetal cerebral artery blood flows. Early Hum Dev. 2004;80:31–42. doi: 10.1016/j.earlhumdev.2004.05.004.
    1. Archibong AE, Inyang F, Ramesh A, Greenwood M, Nayyar T, Kopsombut P, et al. Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol. 2002;16:801–808. doi: 10.1016/S0890-6238(02)00058-8.
    1. Basu R, Woodruff TJ, Parker JD, Saulnier L, Schoendorf KC. Comparing exposure metrics in the relationship between PM2.5 and birth weight in California. J Expo Anal Environ Epidemiol. 2004;14:391–396. doi: 10.1038/sj.jea.7500336.
    1. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115:1118–1125. doi: 10.1289/ehp9759.
    1. Bobak M. Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect. 2000;108:173–176. doi: 10.2307/3454517.
    1. Brauer M, Hoek G, van Vliet P, Meliefste K, Fischer P, Gehring U, et al. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology. 2003;14:228–239. doi: 10.1097/00001648-200303000-00019.
    1. Brook RD. You are what you breathe: evidence linking air pollution and blood pressure. Curr Hypertens Rep. 2005;7:427–434. doi: 10.1007/s11906-005-0037-9.
    1. Brunekreef B, Janssen NA, de Hartog JJ, Oldenwening M, Meliefste K, Hoek G, et al. Research Report 127. Boston: Health Effects Institute; 2005. Personal, Indoor, and Outdoor Exposures to PM2.5 and Its Components for Groups of Cardiovascular Patients in Amsterdam and Helsinki.
    1. Choi H, Jedrychowski W, Spengler J, Camann DE, Whyatt RM, Rauh V, et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environ Health Perspect. 2006;114:1744–1750.
    1. Council of the European Union. Council directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Off J Eur Commun L. 1999;163:41–60.
    1. Cyrys J, Heinrich J, Hoek G, Meliefste K, Lewne M, Gehring U, et al. Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Expo Anal Environ Epidemiol. 2003;13:134–143. doi: 10.1038/sj.jea.7500262.
    1. Cyrys J, Heinrich J, Richter K, Wolke G, Wichmann HE. Sources and concentrations of indoor nitrogen dioxide in Hamburg (West Germany) and Erfurt (East Germany. Sci Total Environ. 2000;250:51–62. doi: 10.1016/S0048-9697(00)00361-2.
    1. Cyrys J, Hochadel M, Gehring U, Hoek G, Diegmann V, Brunekreef B, et al. GIS-based estimation of exposure to particulate matter and NO2 in an urban area: stochastic versus dispersion modeling. Environ Health Perspect. 2005;113:987–992.
    1. Dejmek J, Selevan SG, Benes I, Solansky I, Šrám RJ. Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspect. 1999;107:475–480. doi: 10.2307/3434630.
    1. Dejmek J, Solansky I, Benes I, Lenicek J, Šrám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect. 2000;108:1159–1164. doi: 10.2307/3434828.
    1. Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold DR. Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect. 2006;114:992–998.
    1. Efron B, Tibshirani R. An Introduction to the Bootstrap. New York: Chapman & Hall; 1993.
    1. Gehrig R, Buchmann B. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos Environ. 2003;37:2571–2580. doi: 10.1016/S1352-2310(03)00221-8.
    1. Gehring U, Cyrys J, Sedlmeir G, Brunekreef B, Bellander T, Fischer P, et al. Traffic-related air pollution and respiratory health during the first 2 yrs of life. Eur Respir J. 2002;19:690–698. doi: 10.1183/09031936.02.01182001.
    1. Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology. 2004;15:36–45.
    1. Gomišček B, Hauck H, Stopper S, Preining O. Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP-project. Atmos Environ. 2004;38:3917–3934. doi: 10.1016/j.atmosenv.2004.03.056.
    1. Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol. 2004;160:301–305. doi: 10.1093/aje/kwh221.
    1. Hansteen IL, Kjuus H, Fandrem SI. Birth weight and environmental pollution in the county of Telemark, Norway. Int J Occup Environ Health. 1998;4:63–70.
    1. Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer; 2001.
    1. Hoek G, Meliefste K, Cyrys J, Lewne M, Bellander T, Brauer M, et al. Spatial variability of fine particle concentrations in three European areas. Atmos Environ. 2002;36:4077–4088. doi: 10.1016/S1352-2310(02)00297-2.
    1. Infante-Rivard C, Weinberg CR, Guiguet M. Xenobiotic-metabolizing genes and small-for-gestational-age births: interaction with maternal smoking. Epidemiology. 2006;17:38–46.
    1. Janssen NA, Van Vliet P, Aarts FJ, Harssema H, Brunekreef B. Assessment of exposure to traffic related air pollution of children attending schools near motorway. Atmos Environ. 2001;35:3875–3884. doi: 10.1016/S1352-2310(01)00144-3.
    1. Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, et al. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect. 2004;112:1398–1402.
    1. Kaaja RJ, Greer IA. Manifestations of chronic disease during pregnancy. JAMA. 2005;294:2751–2757. doi: 10.1001/jama.294.21.2751.
    1. Kanaka-Gantenbein C, Mastorakos G, Chrousos GP. Endocrine-related causes and consequences of intrauterine growth retardation. Ann NY Acad Sci. 2003;997:150–157. doi: 10.1196/annals.1290.017.
    1. Kinney PL, Aggarwal M, Northridge ME, Janssen NA, Shepard P. Airborne concentrations of PM2.5 and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect. 2000;108:213–218. doi: 10.2307/3454436.
    1. Kleeman MJ, Schauer JJ, Cass GR. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environ Sci Technol. 1999;33:3516–3523. doi: 10.1021/es981277q.
    1. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65:1513–1530. doi: 10.1080/00984100290071649.
    1. Krzyzanowski M, Kuna-Dibbert B, Schneider J, editors. Health Effects of Transport-related Air Pollution. Copenhagen: World Health Organization, Regional Office for Europe; 2005.
    1. Lash TL, Fink AK. Semi-automated sensitivity analysis to assess systematic errors in observational data. Epidemiology. 2003;14:451–458. doi: 10.1097/.
    1. Lewis C, Suffet IH, Ritz B. Estimated effects of disinfection by-products on birth weight in a population served by a single water utility. Am J Epidemiol. 2006;163:38–47. doi: 10.1093/aje/kwj009.
    1. Lloyd AC, Cackette TA. Diesel engines: environmental impact and control. J Air Waste Manag Assoc. 2001;51:809–847.
    1. Miozzo M, Simoni G. The role of imprinted genes in fetal growth. Biol Neonate. 2002;81:217–228. doi: 10.1159/000056752.
    1. Monn C, Braendli O, Schaepi G, Schindler C, Ackerman-Liebrich U, Leueunberger P, et al. PM10 and total suspended particulates (TSP) in urban, rural and alpine air in Switzerland. Atmospheric Environ. 1995;29:2565–2573. doi: 10.1016/1352-2310(95)94999-U.
    1. Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med. 2007;64:8–16. doi: 10.1136/oem.2006.028241.
    1. National Center for Environmental Assessment. Air Quality Criteria for Particulate Matter. Research Triangle Park, NC: U.S. Environmental Protection Agency; 2004.
    1. Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int. 2006;32:996–1009. doi: 10.1016/j.envint.2006.06.015.
    1. Parker JD, Woodruff TJ, Basu R, Schoendorf KC. Air pollution and birth weight among term infants in California. Pediatrics. 2005;115:121–128.
    1. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–1379. doi: 10.1016/S0895-4356(96)00236-3.
    1. Perera FP, Rauh V, Whyatt RM, Tsai WY, Bernert JT, Tu YH, et al. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ Health Perspect. 2004a;112:626–630.
    1. Perera FP, Tang D, Rauh V, Lester K, Tsai WY, Tu YH, et al. Relationships among polycyclic aromatic hydrocarbon–DNA adducts, proximity to the World Trade Center, and effects on fetal growth. Environ Health Perspect. 2005;113:1062–1067.
    1. Perera FP, Tang D, Tu YH, Cruz LA, Borjas M, Bernert T, et al. Biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect. 2004b;112:1133–1136.
    1. Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM, et al. Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol. 1998;147:309–314.
    1. Peters A, Doring A, Wichmann HE, Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet. 1997;349:1582–1587. doi: 10.1016/S0140-6736(97)01211-7.
    1. Pope CA, III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–742.
    1. Regierung von Oberbayern Luftreinhalteplan für die Stadt München: Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz. 2004. [accessed 21 October 2006]. Available: .
    1. Roemer WH, van Wijnen JH. Differences among black smoke, PM10, and PM1.0 levels at urban measurement sites. Environ Health Perspect. 2001;109:151–154. doi: 10.2307/3434768.
    1. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BR. Measurement of emissions from air pollution sources 2.C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol. 1999;3336:1578–1587. doi: 10.1021/es980081n.
    1. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BR. Measurement of emissions from air pollution sources. 5.C1-C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol. 2002;36:1169–1180. doi: 10.1021/es0108077.
    1. Slama R, Werwatz A. Controlling for continuous confounding factors: non- and semi-parametric approaches. Rev Epidemiol Sante Publique. 2005;53:2S65–80.
    1. Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol. 2005;162:199–200. doi: 10.1093/aje/kwi188.
    1. Šrám RJ, Binková B, Dejmek J, Bobak M. Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect. 2005;113:375–382.
    1. Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environ Sci. 2004;11:33–45.
    1. Tsukue N, Tsubone H, Suzuki AK. Diesel exhaust affects the abnormal delivery in pregnant mice and the growth of their young. Inhal Toxicol. 2002;14:635–651. doi: 10.1080/08958370290084548.
    1. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710–718. doi: 10.1093/aje/kwk052.
    1. Whyatt RM, Santella RM, Jedrychowski W, Garte SJ, Bell DA, Ottman R, et al. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns. Environ Health Perspect. 1998;106(suppl 3):821–826. doi: 10.2307/3434196.
    1. Wilhelm M, Ritz B. Residential proximity to traffic and adverse birth outcomes in Los Angeles County, California, 1994–1996. Environ Health Perspect. 2003;111:207–216.
    1. Wilhelm M, Ritz B. Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect. 2005;113:1212–1221.
    1. Yoshida S, Ono N, Tsukue N, Oshio S, Umeda T, Takano H, et al. In utero exposure to diesel exhaust increased accessory reproductive gland weight and serum testosterone concentration in male mice. Environ Sci. 2006;13:139–147.
    1. Zdravkovic T, Genbacev O, McMaster MT, Fisher SJ. The adverse effects of maternal smoking on the human placenta: a review. Placenta. 2005;26(suppl A):S81–86.

Source: PubMed

3
Abonnere