A framework for the evaluation of patients with congenital facial weakness

Bryn D Webb, Irini Manoli, Elizabeth C Engle, Ethylin W Jabs, Bryn D Webb, Irini Manoli, Elizabeth C Engle, Ethylin W Jabs

Abstract

There is a broad differential for patients presenting with congenital facial weakness, and initial misdiagnosis unfortunately is common for this phenotypic presentation. Here we present a framework to guide evaluation of patients with congenital facial weakness disorders to enable accurate diagnosis. The core categories of causes of congenital facial weakness include: neurogenic, neuromuscular junction, myopathic, and other. This diagnostic algorithm is presented, and physical exam considerations, additional follow-up studies and/or consultations, and appropriate genetic testing are discussed in detail. This framework should enable clinical geneticists, neurologists, and other rare disease specialists to feel prepared when encountering this patient population and guide diagnosis, genetic counseling, and clinical care.

Keywords: Clinical characterization; Clinical genetics; Congenital facial weakness; Facial paralysis.

Conflict of interest statement

None.

Figures

Fig. 1
Fig. 1
Differential Diagnosis for CFW Disorders. CFW disorders may be due to neurogenic, neuromuscular junction, myopathic, or other causes
Fig. 2
Fig. 2
CFW seen in an adult female. This adult female with Moebius syndrome has CFW, often described as causing a “mask-like” facial appearance. She has bilateral CFP and is more affected on her right side

References

    1. Husseman J, Mehta RP. Management of synkinesis. Facial Plast Surg. 2008;24:242–249. doi: 10.1055/s-2008-1075840.
    1. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ, Oystreck DT, Chan WM, Andrews C, Erickson RP, Engle EC. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005;37:1035–1037. doi: 10.1038/ng1636.
    1. Bosley TM, Alorainy IA, Salih MA, Aldhalaan HM, Abu-Amero KK, Oystreck DT, Tischfield MA, Engle EC, Erickson RP. The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A. 2008;146A:1235–1240. doi: 10.1002/ajmg.a.32262.
    1. Holve S, Friedman B, Hoyme HE, Tarby TJ, Johnstone SJ, Erickson RP, Clericuzio CL, Cunniff C. Athabascan brainstem dysgenesis syndrome. Am J Med Genet A. 2003;120A:169–173. doi: 10.1002/ajmg.a.20087.
    1. Rankin JK, Andrews C, Chan WM, Engle EC. HOXA1 mutations are not a common cause of Mobius syndrome. J AAPOS. 2010;14:78–80. doi: 10.1016/j.jaapos.2009.11.007.
    1. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, Chan WM, Andrews C, Demer JL, Robertson RL, Mackey DA, Ruddle JB, Bird TD, Gottlob I, Pieh C, Traboulsi EI, Pomeroy SL, Hunter DG, Soul JS, Newlin A, Sabol LJ, Doherty EJ, de Uzcategui CE, de Uzcategui N, Collins ML, Sener EC, Wabbels B, Hellebrand H, Meitinger T, de Berardinis T, Magli A, Schiavi C, Pastore-Trossello M, Koc F, Wong AM, Levin AV, Geraghty MT, Descartes M, Flaherty M, Jamieson RV, Moller HU, Meuthen I, Callen DF, Kerwin J, Lindsay S, Meindl A, Gupta ML, Jr, Pellman D, Engle EC. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140:74–87. doi: 10.1016/j.cell.2009.12.011.
    1. Chew S, Balasubramanian R, Chan WM, Kang PB, Andrews C, Webb BD, MacKinnon SE, Oystreck DT, Rankin J, Crawford TO, Geraghty M, Pomeroy SL, Crowley WF, Jr, Jabs EW, Hunter DG, Grant PE, Engle EC. A novel syndrome caused by the E410K amino acid substitution in the neuronal beta-tubulin isotype 3. Brain. 2013;136:522–535. doi: 10.1093/brain/aws345.
    1. Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A. 2010;152A:674–686. doi: 10.1002/ajmg.a.33323.
    1. Webb BD, Shaaban S, Gaspar H, Cunha LF, Schubert CR, Hao K, Robson CD, Chan WM, Andrews C, MacKinnon S, Oystreck DT, Hunter DG, Iacovelli AJ, Ye X, Camminady A, Engle EC, Jabs EW. HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice. Am J Hum Genet. 2012;91:171–179. doi: 10.1016/j.ajhg.2012.05.018.
    1. Uyguner ZO, Toksoy G, Altunoglu U, Ozgur H, Basaran S, Kayserili H. A new hereditary congenital facial palsy case supports arg5 in HOX-DNA binding domain as possible hot spot for mutations. Eur J Med Genet. 2015;58:358–363. doi: 10.1016/j.ejmg.2015.05.003.
    1. Vogel M, Velleuer E, Schmidt-Jimenez LF, Mayatepek E, Borkhardt A, Alawi M, Kutsche K, Kortum F. Homozygous HOXB1 loss-of-function mutation in a large family with hereditary congenital facial paresis. Am J Med Genet A. 2016;170:1813–1819. doi: 10.1002/ajmg.a.37682.
    1. Sahin Y, Gungor O, Ayaz A, Gungor G, Sahin B, Yaykasli K, Ceylaner S. A novel homozygous HOXB1 mutation in a Turkish family with hereditary congenital facial paresis. Brain Dev. 2017;39(2):166–170. doi: 10.1016/j.braindev.2016.09.002.
    1. Vahidi Mehrjardi MY, Maroofian R, Kalantar SM, Jaafarinia M, Chilton J, Dehghani M. A novel loss-of-function mutation in HOXB1 associated with autosomal recessive hereditary congenital facial palsy in a large iranian family. Mol Syndromol. 2017;8:261–265. doi: 10.1159/000477752.
    1. Verzijl HT, van den Helm B, Veldman B, Hamel BC, Kuyt LP, Padberg GW, Kremer H. A second gene for autosomal dominant Mobius syndrome is localized to chromosome 10q, in a Dutch family. Am J Hum Genet. 1999;65:752–756. doi: 10.1086/302539.
    1. Michielse CB, Bhat M, Brady A, Jafrid H, van den Hurk JA, Raashid Y, Brunner HG, van Bokhoven H, Padberg GW. Refinement of the locus for hereditary congenital facial palsy on chromosome 3q21 in two unrelated families and screening of positional candidate genes. Eur J Hum Genet. 2006;14:1306–1312. doi: 10.1038/sj.ejhg.5201706.
    1. Kremer H, Kuyt LP, van den Helm B, van Reen M, Leunissen JA, Hamel BC, Jansen C, Mariman EC, Frants RR, Padberg GW. Localization of a gene for Mobius syndrome to chromosome 3q by linkage analysis in a Dutch family. Hum Mol Genet. 1996;5:1367–1371. doi: 10.1093/hmg/5.9.1367.
    1. Miller G. Neurological disorders. The mystery of the missing smile. Science 2007;316:826–7.
    1. MacKinnon S, Oystreck DT, Andrews C, Chan WM, Hunter DG, Engle EC. Diagnostic distinctions and genetic analysis of patients diagnosed with moebius syndrome. Ophthalmology. 2014;121:1461–1468. doi: 10.1016/j.ophtha.2014.01.006.
    1. Miller MT, Ventura L, Stromland K. Thalidomide and misoprostol: Ophthalmologic manifestations and associations both expected and unexpected. Birth Defects Res A Clin Mol Teratol. 2009;85:667–676. doi: 10.1002/bdra.20609.
    1. Ventura BV, Miller MT, Danda D, Carta A, Brandt CT, Ventura LO. Profile of ocular and systemic characteristics in Mobius sequence patients from Brazil and Italy. Arq Bras Oftalmol. 2012;75:202–206. doi: 10.1590/S0004-27492012000300011.
    1. Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, Verzijl H, Soria L, van Beusekom E, Roscioli T, Iqbal Z, Gilissen C, Hoischen A, de Brouwer APM, Erasmus C, Schubert D, Brunner H, Perez Aytes A, Marin F, Aroca P, Kayserili H, Carta A, de Wind N, Padberg GW, van Bokhoven H. De novo mutations in PLXND1 and REV3L cause Mobius syndrome. Nat Commun. 2015;6:7199. doi: 10.1038/ncomms8199.
    1. Heike CL, Luquetti DV, Hing AV. Craniofacial Microsomia Overview. In: GeneReviews((R)). Seattle (WA);1993.
    1. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, Prioleau C, Herbst R, Goillot E, Ioos C, Azulay JP, Attarian S, Leroy JP, Fournier E, Legay C, Schaeffer L, Koenig J, Fardeau M, Eymard B, Pouget J, Hantai D. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–3240. doi: 10.1093/hmg/ddh333.
    1. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, Newsom-Davis J, Burke G, Fawcett P, Motomura M, Muller JS, Lochmuller H, Slater C, Vincent A, Yamanashi Y. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–1978. doi: 10.1126/science.1130837.
    1. Ohno K, Engel AG, Shen XM, Selcen D, Brengman J, Harper CM, Tsujino A, Milone M. Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–885. doi: 10.1086/339465.
    1. Mihaylova V, Salih MA, Mukhtar MM, Abuzeid HA, El-Sadig SM, von der Hagen M, Huebner A, Nurnberg G, Abicht A, Muller JS, Lochmuller H, Guergueltcheva V. Refinement of the clinical phenotype in musk-related congenital myasthenic syndromes. Neurology. 2009;73:1926–1928. doi: 10.1212/WNL.0b013e3181c3fce9.
    1. Goldhammer Y, Blatt I, Sadeh M, Goodman RM. Congenital myasthenia associated with facial malformations in Iraqi and Iranian Jews A new genetic syndrome. Brain. 1990;113(Pt 5):1291–1306. doi: 10.1093/brain/113.5.1291.
    1. Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:420–434. doi: 10.1016/S1474-4422(14)70201-7.
    1. Carey JC, Fineman RM, Ziter FA. The Robin sequence as a consequence of malformation, dysplasia, and neuromuscular syndromes. J Pediatr. 1982;101:858–864. doi: 10.1016/S0022-3476(82)80348-X.
    1. Carey JC. The Carey–Fineman–Ziter syndrome: follow-up of the original siblings and comments on pathogenesis. Am J Med Genet A. 2004;127A:294–297. doi: 10.1002/ajmg.a.20689.
    1. Di Gioia SA, Connors S, Matsunami N, Cannavino J, Rose MF, Gilette NM, Artoni P, de Macena Sobreira NL, Chan WM, Webb BD, Robson CD, Cheng L, Van Ryzin C, Ramirez-Martinez A, Mohassel P, Leppert M, Scholand MB, Grunseich C, Ferreira CR, Hartman T, Hayes IM, Morgan T, Markie DM, Fagiolini M, Swift A, Chines PS, Speck-Martins CE, Collins FS, Jabs EW, Bonnemann CG, Olson EN, Moebius Syndrome Research C, Carey JC, Robertson SP, Manoli I, Engle EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun 2017;8:16077.
    1. Jungbluth H, Zhou H, Sewry CA, Robb S, Treves S, Bitoun M, Guicheney P, Buj-Bello A, Bonnemann C, Muntoni F. Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord. 2007;17:338–345. doi: 10.1016/j.nmd.2007.01.016.
    1. Shaaban S, Ramos-Platt L, Gilles FH, Chan WM, Andrews C, De Girolami U, Demer J, Engle EC. RYR1 mutations as a cause of ophthalmoplegia, facial weakness, and malignant hyperthermia. JAMA Ophthalmol. 2013;131:1532–1540. doi: 10.1001/jamaophthalmol.2013.4392.
    1. Beggs AH, Agrawal PB. Multiminicore Disease. In: GeneReviews((R)). Seattle (WA);1993.
    1. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Estournet B, Richard P, Fardeau M, Guicheney P. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71:739–749. doi: 10.1086/342719.
    1. Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG. Congenital myopathies: an update. Curr Neurol Neurosci Rep. 2012;12:165–174. doi: 10.1007/s11910-012-0255-x.
    1. Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, Witting N, Rasmussen M, Gabbett MT, Ravenscroft G, Sframeli M, Suetterlin K, Sarkozy A, D'Argenzio L, Hartley L, Matthews E, Pitt M, Vissing J, Ballegaard M, Krarup C, Slordahl A, Halvorsen H, Ye XC, Zhang LH, Lokken N, Werlauff U, Abdelsayed M, Davis MR, Feng L, Phadke R, Sewry CA, Morgan JE, Laing NG, Vallance H, Ruben P, Hanna MG, Lewis S, Kamsteeg EJ, Mannikko R, Muntoni F. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain. 2016;139:674–691. doi: 10.1093/brain/awv352.
    1. Preston MK, Tawil R, Wang LH. Facioscapulohumeral Muscular Dystrophy. In: GeneReviews((R)). Seattle (WA);1993.
    1. Bird TD. Myotonic Dystrophy Type 1. In: GeneReviews((R)). Seattle (WA);1993.
    1. Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, Saint-Amant L, Satish A, Cui WW, Zhou W, Sprague SM, Stamm DS, Powell CM, Speer MC, Franzini-Armstrong C, Hirata H, Kuwada JY. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun. 2013;4:1952. doi: 10.1038/ncomms2952.
    1. Grzybowski M, Schanzer A, Pepler A, Heller C, Neubauer BA, Hahn A. Novel STAC3 mutations in the first non-amerindian patient with native american myopathy. Neuropediatrics. 2017;48:451–455. doi: 10.1055/s-0037-1601868.
    1. Telegrafi A, Webb BD, Robbins SM, Speck-Martins CE, FitzPatrick D, Fleming L, Redett R, Dufke A, Houge G, van Harssel JJT, Verloes A, Robles A, Manoli I, Engle EC, Moebius Syndrome Research C, Jabs EW, Valle D, Carey J, Hoover-Fong JE, Sobreira NLM. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome. Am J Med Genet A 2017;173:2763–71.
    1. Zaharieva IT, Sarkozy A, Munot P, Manzur A, O'Grady G, Rendu J, Malfatti E, Amthor H, Servais L, Urtizberea JA, Neto OA, Zanoteli E, Donkervoort S, Taylor J, Dixon J, Poke G, Foley AR, Holmes C, Williams G, Holder M, Yum S, Medne L, Quijano-Roy S, Romero NB, Faure J, Feng L, Bastaki L, Davis MR, Phadke R, Sewry CA, Bonnemann CG, Jungbluth H, Bachmann C, Treves S, Muntoni F. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum Mutat. 2018;39:1980–1994. doi: 10.1002/humu.23635.
    1. North KN, Ryan MM. Nemaline Myopathy. In: GeneReviews((R)). Seattle (WA);1993.
    1. Garg A, O'Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, Nelson BR, Beetz N, Li L, Chen S, Laing NG, Grange RW, Bassel-Duby R, Olson EN. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J Clin Invest. 2014;124:3529–3539. doi: 10.1172/JCI74994.
    1. Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N, Tsurusaki Y, Doi H, Saitsu H, Osaka H, Yamashita S, Ohya T, Sakamoto Y, Koshimizu E, Imamura S, Yamashita M, Ogata K, Shiina M, Bryson-Richardson RJ, Vaz R, Ceyhan O, Brownstein CA, Swanson LC, Monnot S, Romero NB, Amthor H, Kresoje N, Sivadorai P, Kiraly-Borri C, Haliloglu G, Talim B, Orhan D, Kale G, Charles AK, Fabian VA, Davis MR, Lammens M, Sewry CA, Manzur A, Muntoni F, Clarke NF, North KN, Bertini E, Nevo Y, Willichowski E, Silberg IE, Topaloglu H, Beggs AH, Allcock RJ, Nishino I, Wallgren-Pettersson C, Matsumoto N, Laing NG. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 2013;93:6–18.
    1. Frints SGM, Hennig F, Colombo R, Jacquemont S, Terhal P, Zimmerman HH, Hunt D, Mendelsohn BA, Kordass U, Webster R, Sinnema M, Abdul-Rahman O, Suckow V, Fernandez-Jaen A, van Roozendaal K, Stevens SJC, Macville MVE, Al-Nasiry S, van Gassen K, Utzig N, Koudijs SM, McGregor L, Maas SM, Baralle D, Dixit A, Wieacker P, Lee M, Lee AS, Engle EC, Houge G, Gradek GA, Douglas AGL, Longman C, Joss S, Velasco D, Hennekam RC, Hirata H, Kalscheuer VM. Deleterious de novo variants of X-linked ZC4H2 in females cause a variable phenotype with neurogenic arthrogryposis multiplex congenita. Hum Mutat. 2019;40:2270–2285. doi: 10.1002/humu.23841.
    1. Hirata H, Nanda I, van Riesen A, McMichael G, Hu H, Hambrock M, Papon MA, Fischer U, Marouillat S, Ding C, Alirol S, Bienek M, Preisler-Adams S, Grimme A, Seelow D, Webster R, Haan E, MacLennan A, Stenzel W, Yap TY, Gardner A, Nguyen LS, Shaw M, Lebrun N, Haas SA, Kress W, Haaf T, Schellenberger E, Chelly J, Viot G, Shaffer LG, Rosenfeld JA, Kramer N, Falk R, El-Khechen D, Escobar LF, Hennekam R, Wieacker P, Hubner C, Ropers HH, Gecz J, Schuelke M, Laumonnier F, Kalscheuer VM. ZC4H2 mutations are associated with arthrogryposis multiplex congenita and intellectual disability through impairment of central and peripheral synaptic plasticity. Am J Hum Genet. 2013;92:681–695. doi: 10.1016/j.ajhg.2013.03.021.
    1. Giannotti A, Digilio MC, Marino B, Mingarelli R, Dallapiccola B. Cayler cardiofacial syndrome and del 22q11: part of the CATCH22 phenotype. Am J Med Genet. 1994;53:303–304. doi: 10.1002/ajmg.1320530320.
    1. Lemire G, Campeau PM, Lee BH. KAT6B Disorders. In: GeneReviews((R)). Seattle (WA);1993.
    1. McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, Aracena MI, Aylsworth AS, Bitoun P, Carey JC, Clericuzio CL, Crow YJ, Curry CJ, Devriendt K, Everman DB, Fryer A, Gibson K, Giovannucci Uzielli ML, Graham JM, Jr., Hall JG, Hecht JT, Heidenreich RA, Hurst JA, Irani S, Krapels IP, Leroy JG, Mowat D, Plant GT, Robertson SP, Schorry EK, Scott RH, Seaver LH, Sherr E, Splitt M, Stewart H, Stumpel C, Temel SG, Weaver DD, Whiteford M, Williams MS, Tabor HK, Smith JD, Shendure J, Nickerson DA, University of Washington Center for Mendelian Genomics, Bamshad MJ. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet 2014;94:734–44.
    1. Shieh JT, Aradhya S, Novelli A, Manning MA, Cherry AM, Brumblay J, Salpietro CD, Bernardini L, Dallapiccola B, Hoyme HE. Nablus mask-like facial syndrome is caused by a microdeletion of 8q detected by array-based comparative genomic hybridization. Am J Med Genet A. 2006;140:1267–1273. doi: 10.1002/ajmg.a.31262.
    1. Raas-Rothschild A, Dijkhuizen T, Sikkema-Raddatz B, Werner M, Dagan J, Abeliovich D, Lerer I. The 8q22.1 microdeletion syndrome or Nablus mask-like facial syndrome: report on two patients and review of the literature. Eur J Med Genet 2009;52:140–4.
    1. Jamuar SS, Duzkale H, Duzkale N, Zhang C, High FA, Kaban L, Bhattacharya S, Crandall B, Kantarci S, Stoler JM, Lin AE. Deletion of chromosome 8q22.1, a critical region for Nablus mask-like facial syndrome: four additional cases support a role of genetic modifiers in the manifestation of the phenotype. Am J Med Genet A 2015;167:1400–5.

Source: PubMed

3
Abonnere