Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

Claudia Alia, Cristina Spalletti, Stefano Lai, Alessandro Panarese, Giuseppe Lamola, Federica Bertolucci, Fabio Vallone, Angelo Di Garbo, Carmelo Chisari, Silvestro Micera, Matteo Caleo, Claudia Alia, Cristina Spalletti, Stefano Lai, Alessandro Panarese, Giuseppe Lamola, Federica Bertolucci, Fabio Vallone, Angelo Di Garbo, Carmelo Chisari, Silvestro Micera, Matteo Caleo

Abstract

Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration.

Keywords: callosal connections; local field potentials; motor cortex; non-invasive brain stimulation; plasticity; rehabilitation; robotics; stroke.

Figures

Figure 1
Figure 1
Effect of DMCM on motor recovery after focal cortical ischemia in mice. (A) The number of foot faults in the gridwalk task is persistently decreased after transient DMCM treatment (two way RM ANOVA followed by Tukey test, *p < 0.05; n = 10). (B) In the single-pellet retrieval task, the fraction of incorrect graspings decreases after DMCM treatment (two way RM ANOVA, followed by Tukey test, **p < 0.01). Data are shown as percentage of the initial deficit, i.e., the difference in the fraction of foot faults/incorrect graspings between day 2 and baseline (before stroke). Modified from Alia et al. (2016).
Figure 2
Figure 2
Functional interhemispheric coupling in stroke mice. (A) Schematic drawing of stroke and electrode location for local field potential (LFP) recordings. Unilateral phototrombotic stroke was induced in caudal forelimb area (CFA) and bipolar recording (El1 and El2) and reference (Ref1 and Ref2) electrodes were inserted in both rostral forelimb areas (RFAs). A surgical screw (Ground) was placed in the occipital bone and used as ground reference. Orange dot represents Bregma position. Cross correlation (B) and Mutual Information (C) measures between the two hemispheres in control (black) and ischemic (red) animals are shown. Data are means ± standard errors. Modified from Vallone et al. (2016). *P < 0.05, **P < 0.01.
Figure 3
Figure 3
Example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks. An example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks, consisting of: (i) Virtual Reality: software applications composed of rehabilitative and evaluation tasks; (ii) TrackHold: robotic device to support the weight of the user’s limb during tasks execution; (iii) Robotic Hand Exos: active hand exoskeleton to assist grasping tasks; and (iv) Handgrip sensors to support the bilateral grasping training and evaluation (modified from Sgherri et al., 2017).
Figure 4
Figure 4
M-Platform for training and measuring motor performance of mice forelimb. Schematic of the robotic device. The main components are indicated: head fixation system, peristaltic pump with a gavage-feeding needle for liquid reward delivery, restrainer, linear actuator, camera to record forelimb position, plastic handle for the retraction task, linear slide and load cell for forces detection. Modified from Spalletti et al. (2014).

References

    1. Abarbanel H. D. I. (1996). Analysis of Observed Chaotic Data. New York, NY: Springer-Verlag.
    1. Abarbanel H. D. I. (2013). Predicting the Future: Completing Models of Observed Complex Systems. New York, NY: Springer-Verlag.
    1. Agostino R., Iezzi E., Dinapoli L., Gilio F., Conte A., Mari F., et al. . (2007). Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp. Brain Res. 180, 105–111. 10.1007/s00221-006-0838-3
    1. Aisen M. L., Krebs H. I., Hogan N., McDowell F., Volpe B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch. Neurol. 54, 443–446. 10.1001/archneur.1997.00550160075019
    1. Alia C., Spalletti C., Lai S., Panarese A., Micera S., Caleo M., et al. . (2016). Reducing GABAA-mediated inhibition improves forelimb motor function after focal cortical stroke in mice. Sci. Rep. 6:37823. 10.1038/srep37823
    1. Alilain W. J., Horn K. P., Hu H., Dick T. E., Silver J. (2011). Functional regeneration of respiratory pathways after spinal cord injury. Nature 475, 196–200. 10.1038/nature10199
    1. Ameli M., Grefkes C., Kemper F., Riegg F. P., Rehme A. K., Karbe H., et al. . (2009). Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 66, 298–309. 10.1002/ana.21725
    1. Amirabdollahian F., Gradwell E., Loureiro R., Harwin W. (2003). “Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: analysis of the battle hospital data,” in Proceedings of the 8th International Conference on Rehabilitation Robotics (Daejeon), 55–58.
    1. Anderson K. D., Abdul M., Steward O. (2004). Quantitative assessment of deficits and recovery of forelimb motor function after cervical spinal cord injury in mice. Exp. Neurol. 190, 184–191. 10.1016/j.expneurol.2004.06.029
    1. Assenza G., Zappasodi F., Pasqualetti P., Vernieri F., Tecchio F. (2013). A contralesional EEG power increase mediated by interhemispheric disconnection provides negative prognosis in acute stroke. Restor. Neurol. Neurosci. 31, 177–188. 10.3233/RNN-120244
    1. Barbeau H., Visintin M. (2003). Optimal outcomes obtained with body-Weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 84, 1458–1465. 10.1016/s0003-9993(03)00361-7
    1. Barry M. D., Boddington L. J., Igelström K. M., Gray J. P., Shemmell J., Tseng K. Y., et al. . (2014). Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model. Exp. Neurol. 261, 258–266. 10.1016/j.expneurol.2014.05.023
    1. Barsotti M., Sotgiu E., Leonardis D., Sgherri G., Lamola G., Fanciullacci C., et al. (2017). “Novel mixed active hand exoskeleton and assistive arm device for intensive rehabilitative treatment for stroke patients,” in Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems and Biorobotics (Vol. 15), eds Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. L. (Berlin: Springer International Publishing; ), 525–529.
    1. Basso D. M., Beattie M. S., Bresnahan J. C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21. 10.1089/neu.1995.12.1
    1. Basteris A., Nijenhuis S. M., Stienen A. H., Buurke J. H., Prange G. B., Amirabdollahian F., et al. . (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuroeng. Rehabil. 11:111. 10.1186/1743-0003-11-111
    1. Becker A. M., Meyers E., Sloan A., Rennaker R., Kilgard M., Goldberg M. P. (2016). An automated task for the training and assessment of distal forelimb function in a mouse model of ischemic stroke. J. Neurosci. Methods 258, 16–23. 10.1016/j.jneumeth.2015.10.004
    1. Belda-Lois J.-M., Mena-del Horno S., Bermejo-Bosch I., Moreno J. C., Pons J. L., Farina D., et al. . (2011). Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8:66. 10.1186/1743-0003-8-66
    1. Berends H. I., Nijlant J. M. M., Movig K. L. L., Van Putten M. J. A. M., Jannink M. J. A., Ijzerman M. J. (2009). The clinical use of drugs influencing neurotransmitters in the brain to promote motor recovery after stroke; a Cochrane systematic review. Eur. J. Phys. Rehabil. Med. 45, 621–630.
    1. Berretta A., Tzeng Y.-C., Clarkson A. N. (2014). Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev. Neurother. 14, 1335–1344. 10.1586/14737175.2014.969242
    1. Biernaskie J., Chernenko G., Corbett D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J. Neurosci. 24, 1245–1254. 10.1523/jneurosci.3834-03.2004
    1. Biernaskie J., Szymanska A., Windle V., Corbett D. (2005). Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur. J. Neurosci. 21, 989–999. 10.1111/j.1460-9568.2005.03899.x
    1. Bosecker C., Dipietro L., Volpe B., Igo Krebs H. (2010). Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil. Neural Repair 24, 62–69. 10.1177/1545968309343214
    1. Bradbury E. J., Moon L. D. F., Popat R. J., King V. R., Bennett G. S., Patel P. N., et al. . (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640. 10.1038/416636a
    1. Brown C. E., Li P., Boyd J. D., Delaney K. R., Murphy T. H. (2007). Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J. Neurosci. 27, 4101–4109. 10.1523/JNEUROSCI.4295-06.2007
    1. Burgar C. G., Lum P. S., Shor P. C., Machiel Van der Loos H. F. (2000). Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37, 663–673.
    1. Bütefisch C. M., Weßling M., Netz J., Seitz R., Hömberg V. (2008). Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabil. Neural Repair 22, 4–21. 10.1177/1545968307301769
    1. Buzsáki G., Anastassiou C. A., Koch C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. 10.1038/nrn3241
    1. Buzsáki G., Schomburg E. W. (2015). What does gamma coherence tell us about inter-regional neural communication? Nat. Neurosci. 18, 484–489. 10.1038/nn.3952
    1. Cai L. L., Fong A. J., Otoshi C. K., Liang Y., Burdick J. W., Roy R. R., et al. . (2006). Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J. Neurosci. 26, 10564–10568. 10.1523/jneurosci.2266-06.2006
    1. Caleo M. (2015). Rehabilitation and plasticity following stroke: insights from rodent models. Neuroscience 311, 180–194. 10.1016/j.neuroscience.2015.10.029
    1. Carmichael S. T. (2005). Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2, 396–409. 10.1602/neurorx.2.3.396
    1. Carmichael S. T. (2006). Cellular and molecular mechanisms of neural repair after stroke: Making waves. Ann. Neurol. 59, 735–742. 10.1002/ana.20845
    1. Carmichael S. T., Archibeque I., Luke L., Nolan T., Momiy J., Li S. (2005). Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol. 193, 291–311. 10.1016/j.expneurol.2005.01.004
    1. Carmichael S. T., Wei L., Rovainen C. M., Woolsey T. A. (2001). New patterns of intracortical projections after focal cortical stroke. Neurobiol. Dis. 8, 910–922. 10.1006/nbdi.2001.0425
    1. Carter A. R., Shulman G. L., Corbetta M. (2012). Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage 62, 2271–2280. 10.1016/j.neuroimage.2012.02.070
    1. Censor N., Dimyan M. A., Cohen L. G. (2010). Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr. Biol. 20, 1545–1549. 10.1016/j.cub.2010.07.047
    1. Chang W. H., Kim Y.-H. (2013). Robot-assisted therapy in stroke rehabilitation. J. Stroke 15, 174–181. 10.5853/jos.2013.15.3.174
    1. Chen R., Classen J., Gerloff C., Celnik P., Wassermann E. M., Hallett M., et al. . (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403. 10.1212/wnl.48.5.1398
    1. Cherubini E. (2012). “Phasic GABAA-mediated inhibition,” in Jasper’s Basic Mechanisms of the Epilepsies, eds Noebels J. L., Avoli M., Rogawski M., Olsen R., Delgado-Escueta A. (Bethesda, MD: National Center for Biotechnology Information (US)) 127 –146.
    1. Chisari C. (2015). Bottom-up or top-down approach? understanding the way to reach the milestone of recovery in stroke. Int. J. Neurorehabil. 2:e107 10.4172/2376-0281.1000e107
    1. Chisari C., Bertolucci F., Monaco V., Venturi M., Simonella C., Micera S., et al. . (2015). Robot-assisted gait training improves motor performances and modifies Motor Unit firing in poststroke patients. Eur. J. Phys. Rehabil. Med. 51, 59–69.
    1. Chisari C., Fanciullacci C., Lamola G., Rossi B., Cohen L. G. (2014). NIBS-driven brain plasticity. Arch. Ital. Biol. 152, 247–258. 10.12871/00039829201445
    1. Cicinelli P., Pasqualetti P., Zaccagnini M., Traversa R., Oliveri M., Rossini P. M. (2003). Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34, 2653–2658. 10.1161/01.STR.0000092122.96722.72
    1. Cicinelli P., Traversa R., Rossini P. M. (1997). Post-stroke reorganization of brain motor output to the hand: a 2-4 month follow-up with focal magnetic transcranial stimulation. Electroencephalogr. Clin. Neurophysiol. 105, 438–450. 10.1016/s0924-980x(97)00052-0
    1. Clarkson A. N., Carmichael S. T. (2009). Cortical excitability and post-stroke recovery. Biochem. Soc. Trans. 37, 1412–1414. 10.1042/BST0371412
    1. Clarkson A. N., Huang B. S., Macisaac S. E., Mody I., Carmichael S. T. (2010). Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309. 10.1038/nature09511
    1. Clarkson A. N., Overman J. J., Zhong S., Mueller R., Lynch G., Carmichael S. T. (2011). AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J. Neurosci. 31, 3766–3775. 10.1523/JNEUROSCI.5780-10.2011
    1. Colombo G., Joerg M., Schreier R., Dietz V. (2000). Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37, 693–700.
    1. Colombo R., Pisano F., Micera S., Mazzone A., Delconte C., Carrozza M. C., et al. . (2005). Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 311–324. 10.1109/TNSRE.2005.848352
    1. Colombo R., Sterpi I., Mazzone A., Delconte C., Minuco G., Pisano F. (2010). Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 75–85. 10.1109/TNSRE.2009.2028831
    1. Colombo G., Wirz M., Dietz V. (2001). Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39, 252–255. 10.1038/sj.sc.3101154
    1. Combs H. L., Jones T. A., Kozlowski D. A., Adkins D. L. (2016). Combinatorial motor training results in functional reorganization of remaining motor cortex after controlled cortical impact in rats. J. Neurotrauma 33, 741–747. 10.1089/neu.2015.4136
    1. Conchou F., Loubinoux I., Castel-Lacanal E., Le Tinnier A., Gerdelat-Mas A., Faure-Marie N., et al. . (2009). Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients. A PET study. Hum. Brain Mapp. 30, 2542–2557. 10.1002/hbm.20690
    1. Conner J. M., Chiba A. A., Tuszynski M. H. (2005). The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46, 173–179. 10.1016/j.neuron.2005.03.003
    1. Cramer S. C. (2008). Repairing the human brain after stroke. II. Restorative therapies. Ann. Neurol. 63, 549–560. 10.1002/ana.21412
    1. Dancause N., Nudo R. J. (2011). Shaping plasticity to enhance recovery after injury. Prog. Brain Res. 192, 273–295. 10.1016/B978-0-444-53355-5.00015-4
    1. Dancause N., Touvykine B., Mansoori B. K. (2015). Inhibition of the contralesional hemisphere after strokereviewing a few of the building blocks with a focus on animal models. Prog. Brain Res. 218, 361–387. 10.1016/bs.pbr.2015.01.002
    1. Darling W. G., Pizzimenti M. A., Morecraft R. J. (2011). Functional recovery following motor cortex lesions in non-human primates: experimental implications for human stroke patients. J. Integr. Neurosci. 10, 353–384. 10.1142/s0219635211002737
    1. Dayan E., Censor N., Buch E. R., Sandrini M., Cohen L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16, 838–844. 10.1038/nn.3422
    1. Dayan E., Cohen L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron 72, 443–454. 10.1016/j.neuron.2011.10.008
    1. Deidda G., Allegra M., Cerri C., Naskar S., Bony G., Zunino G., et al. . (2015). Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat. Neurosci. 18, 87–96. 10.1038/nn.3890
    1. Di Filippo M., Tozzi A., Costa C., Belcastro V., Tantucci M., Picconi B., et al. . (2008). Plasticity and repair in the post-ischemic brain. Neuropharmacology 55, 353–362. 10.1016/j.neuropharm.2008.01.012
    1. Dijkhuizen R. M., Ren J., Mandeville J. B., Wu O., Ozdag F. M., Moskowitz M. A., et al. . (2001). Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc. Natl. Acad. Sci. U S A 98, 12766–12771. 10.1073/pnas.231235598
    1. Di Lazzaro V., Profice P., Pilato F., Capone F., Ranieri F., Pasqualetti P., et al. . (2010). Motor cortex plasticity predicts recovery in acute stroke. Cereb. Cortex 20, 1523–1528. 10.1093/cercor/bhp216
    1. Di Lazzaro V., Rothwell J. C., Talelli P., Capone F., Ranieri F., Wallace A. C., et al. . (2013). Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. Neurosci. Lett. 553, 148–152. 10.1016/j.neulet.2013.08.013
    1. Di Pino G., Pellegrino G., Assenza G., Capone F., Ferreri F., Formica D., et al. . (2014). Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat. Rev. Neurol. 10, 597–608. 10.1038/nrneurol.2014.162
    1. Dominici N., Keller U., Vallery H., Friedli L., van den Brand R., Starkey M. L., et al. . (2012). Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med. 18, 1142–1147. 10.1038/nm.2845
    1. Edwards D. J. (2009). On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation. J. Neuroeng. Rehabil. 6:3. 10.1186/1743-0003-6-3
    1. Farrant M., Nusser Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229. 10.1038/nrn1625
    1. Fasoli S. E., Krebs H. I., Stein J., Frontera W. R., Hughes R., Hogan N. (2004). Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch. Phys. Med. Rehabil. 85, 1106–1111. 10.1016/j.apmr.2003.11.028
    1. Fawcett J. W. (2015). The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 218, 213–226. 10.1016/bs.pbr.2015.02.001
    1. Fazekas G., Horvath M., Troznai T., Toth A. (2007). Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J. Rehabil. Med. 39, 580–582. 10.2340/16501977-0087
    1. Finnigan S., van Putten M. J. A. M. (2013). EEG in ischaemic stroke: quantitative eeg can uniquely inform (sub-)acute prognoses and clinical management. Clin. Neurophysiol. 124, 10–19. 10.1016/j.clinph.2012.07.003
    1. Flor H. (2008). Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev. Neurother. 8, 809–818. 10.1586/14737175.8.5.809
    1. Florez J. M., Shah M., Martin Moraud E., Wurth S., Baud L., von Zitzewitz J., et al. . (2016). Rehabilitative soft exoskeleton for rodents. IEEE Trans. Neural Syst. Rehabil. Eng. [Epub ahead of print]. 10.1109/TNSRE.2016.2535352
    1. Fong A. J., Cai L. L., Otoshi C. K., Reinkensmeyer D. J., Burdick J. W., Roy R. R., et al. . (2005). Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training. J. Neurosci. 25, 11738–11747. 10.1523/JNEUROSCI.1523-05.2005
    1. Fowler S. C., Davison K. H., Stanford J. A. (1994). Unlike haloperidol, clozapine slows and dampens rats’ forelimb force oscillations and decreases force output in a press-while-licking behavioral task. Psychopharmacology 116, 19–25. 10.1007/bf02244866
    1. Francis J. T., Chapin J. K. (2004). Force field apparatus for investigating movement control in small animals. IEEE Trans. Biomed. Eng. 51, 18–20. 10.1109/tbme.2004.827463
    1. Fregni F., Pascual-Leone A. (2007). Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–393. 10.1038/ncpneuro0530
    1. Freivogel S., Schmalohr D., Mehrholz J. (2009). Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J. Rehabil. Med. 41, 734–739. 10.2340/16501977-0422
    1. Freund P., Schmidlin E., Wannier T., Bloch J., Mir A., Schwab M. E., et al. . (2006). Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat. Med. 12, 790–792. 10.1038/nm1436
    1. Fridman E. A., Hanakawa T., Chung M., Hummel F., Leiguarda R. C., Cohen L. G. (2004). Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127, 747–758. 10.1093/brain/awh082
    1. Frisoli A., Sotgiu E., Procopio C., Bergamasco M., Rossi B., Chisari C. (2011). Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. IEEE Int. Conf. Rehabil. Robot. 2011:5975512. 10.1109/ICORR.2011.5975512
    1. Friston K., Moran R., Seth A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178. 10.1016/j.conb.2012.11.010
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. . (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204. 10.1016/j.neuron.2010.03.035
    1. Fritschy J.-M., Panzanelli P. (2014). GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur. J. Neurosci. 39, 1845–1865. 10.1111/ejn.12534
    1. Fritschy J.-M., Johnson D. K., Mohler H., Rudolph U. (1998). Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249, 99–102. 10.1016/s0304-3940(98)00397-8
    1. García-Alías G., Barkhuysen S., Buckle M., Fawcett J. W. (2009). Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151. 10.1038/nn.2377
    1. Gerloff C., Bushara K., Sailer A., Wassermann E. M., Chen R., Matsuoka T., et al. . (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129, 791–808. 10.1093/brain/awh713
    1. Gherardini L., Gennaro M., Pizzorusso T. (2015). Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb. Cortex 25, 202–212. 10.1093/cercor/bht217
    1. Gonzalez C. L. R., Gharbawie O. A., Williams P. T., Kleim J. A., Kolb B., Whishaw I. Q. (2004). Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur. J. Neurosci. 20, 3442–3452. 10.1111/j.1460-9568.2004.03751.x
    1. Grefkes C., Fink G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134, 1264–1276. 10.1093/brain/awr033
    1. Grefkes C., Fink G. R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216. 10.1016/s1474-4422(13)70264-3
    1. Grefkes C., Nowak D. A., Wang L. E., Dafotakis M., Eickhoff S. B., Fink G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233–242. 10.1016/j.neuroimage.2009.12.029
    1. Grimaldi G., Manto M. (2013). Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training. J. Neuroeng. Rehabil. 10:113. 10.1186/1743-0003-10-113
    1. Guggenmos D. J., Azin M., Barbay S., Mahnken J. D., Dunham C., Mohseni P., et al. . (2013). Restoration of function after brain damage using a neural prosthesis. Proc. Natl. Acad. Sci. U S A 110, 21177–21182. 10.1073/pnas.1316885110
    1. Harrison T. C., Silasi G., Boyd J. D., Murphy T. H. (2013). Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice. Stroke 44, 2300–2306. 10.1161/STROKEAHA.113.001272
    1. Hasegawa Y., Mikami Y., Watanabe K., Sankai Y. (2008). “Five-fingered assistive hand with mechanical compliance of human finger,” in Proceedings-IEEE International Conference on Robotics and Automation (Tsukuba), 718–724. 10.1109/ROBOT.2008.4543290
    1. Hays S. A., Khodaparast N., Sloan A. M., Hulsey D. R., Pantoja M., Ruiz A. D., et al. . (2013). The isometric pull task: a novel automated method for quantifying forelimb force generation in rats. J. Neurosci. Methods 212, 329–337. 10.1016/j.jneumeth.2012.11.007
    1. Hays S. A., Ruiz A., Bethea T., Khodaparast N., Carmel J. B., Rennaker R. L., et al. . (2016). Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging 43, 111–118. 10.1016/j.neurobiolaging.2016.03.030
    1. Hensch T. K. (2005). Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888. 10.1038/nrn1787
    1. Hesse S., Waldner A., Tomelleri C. (2010). Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7:30. 10.1186/1743-0003-7-30
    1. Hidler J., Nichols D., Pelliccio M., Brady K. (2005). Advances in the understanding and treatment of stroke impairment using robotic devices. Top. Stroke Rehabil. 12, 22–35. 10.1310/ryt5-62n4-ctvx-8jte
    1. Hiu T., Farzampour Z., Paz J. T., Wang E. H. J., Badgely C., Olson A., et al. . (2016). Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain 139, 468–480. 10.1093/brain/awv360
    1. Holland D. P., Park E. J., Polygerinos P., Bennett G. J., Walsh C. J. (2014). The soft robotics toolkit: shared resources for research and design. Soft Robot. 1, 224–230. 10.1089/soro.2014.0010
    1. Hornby T. G., Campbell D. D., Kahn J. H., Demott T., Moore J. L., Roth H. R. (2008). Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke. Stroke 39, 1786–1792. 10.1161/STROKEAHA.107.504779
    1. Hosp J. a., Luft A. R. (2011). Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast. 2011:871296. 10.1155/2011/871296
    1. Housman S. J., Scott K. M., Reinkensmeyer D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil. Neural Repair 23, 505–514. 10.1177/1545968308331148
    1. Hsieh Y., Wu C., Lin K., Yao G., Wu K., Chang Y. (2012). Dose-response relationship of robot-assisted stroke motor rehabilitation. Stroke 43, 2729–2734. 10.1161/STROKEAHA.112.658807
    1. Huang Y.-Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45, 201–206. 10.1016/j.neuron.2004.12.033
    1. Huerta P. T., Volpe B. T. (2009). Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J. Neuroeng. Rehabil. 6:7. 10.1186/1743-0003-6-7
    1. Hummel F. C., Celnik P., Pascual-Leone A., Fregni F., Byblow W. D., Buetefisch C. M., et al. . (2008). Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 1, 370–382. 10.1016/j.brs.2008.09.003
    1. Hummel F. C., Cohen L. G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712. 10.1016/s1474-4422(06)70525-7
    1. Husemann B., Müller F., Krewer C., Heller S., Koenig E. (2007). Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. Stroke 38, 349–354. 10.1161/01.STR.0000254607.48765.cb
    1. James G. A., Lu Z.-L., VanMeter J. W., Sathian K., Hu X. P., Butler A. J. (2009). Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top. Stroke Rehabil. 16, 270–281. 10.1310/tsr1604-270
    1. Jones T. A. (1999). Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult rats. J. Comp. Neurol. 414, 57–66. 10.1002/(sici)1096-9861(19991108)414:1<57::aid-cne5>;2-u
    1. Jones T. A., Jefferson S. C. (2011). Reflections of experience-expectant development in repair of the adult damaged brain. Dev. Psychobiol. 53, 466–475. 10.1002/dev.20557
    1. Kahn L. E., Zygman M. L., Rymer W. Z., Reinkensmeyer D. J. (2006). Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J. Neuroeng. Rehabil. 3:12. 10.1186/1743-0003-3-12
    1. Kantz H., Schreiber T. (2004). Nonlinear time series analysis. Technometrics 47:381 10.1198/tech.2005.s306
    1. Kim D.-Y., Lim J.-Y., Kang E. K., You D. S., Oh M.-K., Oh B.-M., et al. . (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 89, 879–886. 10.1097/PHM.0b013e3181f70aa7
    1. Kim Y.-H., Park J.-W., Ko M.-H., Jang S. H., Lee P. K. W. (2004). Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci. Lett. 367, 181–185. 10.1016/j.neulet.2004.05.113
    1. Kim Y. K., Yang E. J., Cho K., Lim J. Y., Paik N.-J. (2014). Functional recovery after ischemic stroke is associated with reduced GABAergic inhibition in the cerebral cortex: a GABA PET study. Neurorehabil. Neural Repair 28, 576–583. 10.1177/1545968313520411
    1. Kinsbourne M. (1977). Hemi-neglect and hemisphere rivalry. Adv. Neurol. 18, 41–49.
    1. Kinsbourne M. (1980). Dichotic imbalance due to isolated hemisphere occlusion or directional rivalry? Brain Lang. 11, 221–224. 10.1016/0093-934x(80)90123-6
    1. Kinsbourne M., McMurray J. (1974). The effect of cerebral dominance on time sharing between speaking and tapping by preschool children. Child Dev. 46, 240–242. 10.2307/1128857
    1. Kobayashi M., Pascual-Leone A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurol. 2, 145–156. 10.1016/S1474-4422(03)00321-1
    1. Krakauer J. W. (2006). Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90. 10.1097/
    1. Kwakkel G., Kollen B., Lindeman E. (2004). Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22, 281–299.
    1. Lai S., Panarese A., Spalletti C., Alia C., Ghionzoli A., Caleo M., et al. . (2015). Quantitative kinematic characterization of reaching impairments in mice after a stroke. Neurorehabil. Neural Repair 29, 382–392. 10.1177/1545968314545174
    1. Lake E. M. R., Chaudhuri J., Thomason L., Janik R., Ganguly M., Brown M., et al. . (2015). The effects of delayed reduction of tonic inhibition on ischemic lesion and sensorimotor function. J. Cereb. Blood Flow Metab. 35, 1601–1609. 10.1038/jcbfm.2015.86
    1. Lamola G., Fanciullacci C., Rossi B., Chisari C. (2014). Clinical evidences of brain plasticity in stroke patients. Arch. Ital. Biol. 152, 259–271. 10.12871/00039829201446
    1. Lazar R. M., Berman M. F., Festa J. R., Geller A. E., Matejovsky T. G., Marshall R. S. (2010). GABAergic but not anti-cholinergic agents re-induce clinical deficits after stroke. J. Neurol. Sci. 292, 72–76. 10.1016/j.jns.2010.01.024
    1. Li S., Carmichael S. T. (2006). Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol. Dis. 23, 362–373. 10.1016/j.nbd.2006.03.011
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247. 10.1093/brain/awf238
    1. Liepert J., Miltner W. H., Bauder H., Sommer M., Dettmers C., Taub E., et al. . (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett. 250, 5–8. 10.1016/s0304-3940(98)00386-3
    1. Liew S.-L., Santarnecchi E., Buch E. R., Cohen L. G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8:378. 10.3389/fnhum.2014.00378
    1. Lisman J. E., Jensen O. (2013). The θ−γ neural code. Neuron 77, 1002–1016. 10.1016/j.neuron.2013.03.007
    1. Lo A. C., Guarino P. D., Richards L. G., Haselkorn J. K., Wittenberg G. F., Federman D. G., et al. . (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783. 10.1056/NEJMoa0911341
    1. Logothetis N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453, 869–878. 10.1038/nature06976
    1. López-Valdés H. E., Clarkson A. N., Ao Y., Charles A. C., Carmichael S. T., Sofroniew M. V., et al. . (2014). Memantine enhances recovery from stroke. Stroke 45, 2093–2100. 10.1161/STROKEAHA.113.004476
    1. Loubinoux I., Carel C., Pariente J., Dechaumont S., Albucher J. F., Marque P., et al. . (2003). Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20, 2166–2180. 10.1016/j.neuroimage.2003.08.017
    1. Lüddens H., Wisden W. (1991). Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmacol. Sci. 12, 49–51. 10.1016/0165-6147(91)90495-e
    1. Lum P. S., Burgar C. G., Shor P. C., Majmundar M., Van der Loos M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959. 10.1053/apmr.2001.33101
    1. Maciejasz P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt S. (2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11:3. 10.1186/1743-0003-11-3
    1. Madden K., Clark W., Lessov N. (2003). Failure of ischemic neuroprotection by potentiators of gamma-aminobutyric acid. Clin. Med. Res. 1, 119–124. 10.3121/cmr.1.2.119
    1. Maier I. C., Ichiyama R. M., Courtine G., Schnell L., Lavrov I., Edgerton V. R., et al. . (2009). Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 132, 1426–1440. 10.1093/brain/awp085
    1. Mansoori B. K., Jean-Charles L., Touvykine B., Liu A., Quessy S., Dancause N. (2014). Acute inactivation of the contralesional hemisphere for longer durations improves recovery after cortical injury. Exp. Neurol. 254, 18–28. 10.1016/j.expneurol.2014.01.010
    1. Marchal-Crespo L., Reinkensmeyer D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6:20. 10.1186/1743-0003-6-20
    1. Marshall R. S., Perera G. M., Lazar R. M., Krakauer J. W., Constantine R. C., DeLaPaz R. L. (2000). Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31, 656–661. 10.1161/01.str.31.3.656
    1. Mayr A., Kofler M., Quirbach E., Matzak H., Fröhlich K., Saltuari L. (2007). Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil. Neural Repair 21, 307–314. 10.1177/1545968307300697
    1. Mayr A., Kofler M., Saltuari L. (2008). ARMOR: elektromechanischer Roboter für das Bewegungstraining der oberen Extremität nach Schlaganfall. Prospektive randomisierte kontrollierte Pilotstudie. Handchir. Mikrochir. Plast. Chir. 40, 66–73. 10.1055/s-2007-989425
    1. Mehrholz J., Pohl M. (2012). Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J. Rehabil. Med. 44, 193–199. 10.2340/16501977-0943
    1. Meyer B. U., Röricht S., Gräfin von Einsiedel H., Kruggel F., Weindl A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118, 429–440. 10.1093/brain/118.2.429
    1. Micera S., Carrozza M. C., Guglielmelli E., Cappiello G., Zaccone F., Freschi C., et al. (2005). A simple robotic system for neurorehabilitation. Auton. Robots 19, 271–284. 10.1007/s10514-005-4749-0
    1. Miniussi C., Vallar G. (2011). Brain stimulation and behavioural cognitive rehabilitation: a new tool for neurorehabilitation? Neuropsychol. Rehabil. 21, 553–559. 10.1080/09602011.2011.622435
    1. Mohajerani M. H., Aminoltejari K., Murphy T. H. (2011). Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc. Natl. Acad. Sci. U S A 108, E183–E191. 10.1073/pnas.1101914108
    1. Morasso P. (1981). Spatial control of arm movements. Exp. Brain Res. 42, 223–237. 10.1007/bf00236911
    1. Muellbacher W., Ziemann U., Wissel J., Dang N., Kofler M., Facchini S., et al. . (2002). Early consolidation in human primary motor cortex. Nature 415, 640–644. 10.1038/nature712
    1. Murase N., Duque J., Mazzocchio R., Cohen L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409. 10.1002/ana.10848
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872. 10.1038/nrn2735
    1. Nair D. G., Hutchinson S., Fregni F., Alexander M., Pascual-Leone A., Schlaug G. (2007). Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage 34, 253–263. 10.1016/j.neuroimage.2006.09.010
    1. Nessler J. A., De Leon R. D., Sharp K., Kwak E., Minakata K., Reinkensmeyer D. J. (2006). Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB. J. Neurotrauma 23, 882–896. 10.1089/neu.2006.23.882
    1. Nessler J. A., Timoszyk W., Merlo M., Emken J. L., Minakata K., Roy R. R., et al. . (2005). A robotic device for studying rodent locomotion after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 497–506. 10.1109/TNSRE.2005.858432
    1. Nishibe M., Barbay S., Guggenmos D., Nudo R. J. (2010). Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J. Neurotrauma 27, 2221–2232. 10.1089/neu.2010.1456
    1. Nishibe M., Urban E. T. R., Barbay S., Nudo R. J. (2015). Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil. Neural Repair 29, 472–482. 10.1177/1545968314543499
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Novak D., Nagle A., Keller U., Riener R. (2014). Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J. Neuroeng. Rehabil. 11:64. 10.1186/1743-0003-11-64
    1. Nowak D. A., Grefkes C., Ameli M., Fink G. R. (2009). Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil. Neural Repair 23, 641–656. 10.1177/1545968309336661
    1. Nowak D. A., Grefkes C., Dafotakis M., Eickhoff S., Küst J., Karbe H., et al. . (2008). Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch. Neurol. 65, 741–747. 10.1001/archneur.65.6.741
    1. Nudo R. J. (2006). Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol. 16, 638–644. 10.1016/j.conb.2006.10.004
    1. Nudo R. J. (2007). Postinfarct cortical plasticity and behavioral recovery. Stroke 38, 840–845. 10.1161/01.STR.0000247943.12887.d2
    1. Nudo R. J. (2013). Recovery after brain injury: mechanisms and principles. Front. Hum. Neurosci. 7:887. 10.3389/fnhum.2013.00887
    1. Nudo R. J., Milliken G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144–2149.
    1. Okabe N., Shiromoto T., Himi N., Lu F., Maruyama-Nakamura E., Narita K., et al. . (2016). Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience 339, 338–362. 10.1016/j.neuroscience.2016.10.008
    1. Panarese A., Colombo R., Sterpi I., Pisano F., Micera S. (2012). Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Neurorehabil. Neural Repair 26, 822–833. 10.1177/1545968311431966
    1. Panarese A., Pirondini E., Tropea P., Cesqui B., Posteraro F., Micera S. (2016). Model-based variables for the kinematic assessment of upper-extremity impairments in post-stroke patients. J. Neuroeng. Rehabil. 13:81. 10.1186/s12984-016-0187-9
    1. Papadopoulos C. M., Tsai S.-Y., Cheatwood J. L., Bollnow M. R., Kolb B. E., Schwab M. E., et al. . (2006). Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb. Cortex 16, 529–536. 10.1093/cercor/bhi132
    1. Pascual-Leone A., Grafman J., Hallett M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289. 10.1126/science.8122113
    1. Pascual-Leone A., Tarazona F., Keenan J., Tormos J. M., Hamilton R., Catala M. D. (1998). Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37, 207–217. 10.1016/S0028-3932(98)00095-5
    1. Pellegrino G., Tomasevic L., Tombini M., Assenza G., Bravi M., Sterzi S., et al. . (2012). Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor. Neurol. Neurosci. 30, 497–510. 10.3233/RNN-2012-120227
    1. Pereda E., Quiroga R. Q., Bhattacharya J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37. 10.1016/j.pneurobio.2005.10.003
    1. Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J. W., Maffei L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251. 10.1126/science.1072699
    1. Posteraro F., Mazzoleni S., Aliboni S., Cesqui B., Battaglia A., Dario P., et al. . (2009). Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury. J. Rehabil. Med. 41, 976–980. 10.2340/16501977-0403
    1. Prange G. B., Jannink M. J. A., Groothuis-Oudshoorn C. G. M., Hermens H. J., Ijzerman M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43, 171–184. 10.1682/jrrd.2005.04.0076
    1. Quartarone A., Siebner H. R., Rothwell J. C. (2006). Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 29, 192–199. 10.1016/j.tins.2006.02.007
    1. Raco V., Bauer R., Tharsan S., Gharabaghi A. (2016). Combining TMS and tACS for closed-loop phase-dependent modulation of corticospinal excitability: a feasibility study. Front. Cell. Neurosci. 10:143. 10.3389/fncel.2016.00143
    1. Ramanathan D., Conner J. M., Tuszynski M. H. (2006). A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc. Natl. Acad. Sci. U S A 103, 11370–11375. 10.1073/pnas.0601065103
    1. Reinkensmeyer D. J., Emken J. L., Cramer S. C. (2004). Robotics, motor learning and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525. 10.1146/annurev.bioeng.6.040803.140223
    1. Reinkensmeyer D. J., Kahn L. E., Averbuch M., McKenna-Cole A., Schmit B. D., Rymer W. Z. (2000). Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37, 653–662.
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. . (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U S A 106, 1590–1595. 10.1073/pnas.0805413106
    1. Reis J., Swayne O. B., Vandermeeren Y., Camus M., Dimyan M. A., Harris-Love M., et al. . (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J. Physiol. 586, 325–351. 10.1113/jphysiol.2007.144824
    1. Ren Y., Park H.-S., Zhang L.-Q. (2009). “Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation,” in Proceedings of the 11th IEEE International Conference on Rehabilitation Robotics (Kyoto: IEEE Press), 761–765. 10.1109/ICORR.2009.5209482
    1. Rijntjes M. (2006). Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr. Opin. Neurol. 19, 76–83. 10.1097/01.wco.0000203886.28068.38
    1. Rohrer B., Fasoli S., Krebs H. I., Hughes R., Volpe B., Frontera W. R., et al. . (2002). Movement smoothness changes during stroke recovery. J. Neurosci. 22, 8297–8304.
    1. Rohrer B., Hogan N. (2006). Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol. Cybern. 94, 409–414. 10.1007/s00422-006-0055-y
    1. Rossi S., Pasqualetti P., Tecchio F., Pauri F., Rossini P. M. (1998). Corticospinal excitability modulation during mental simulation of wrist movements in human subjects. Neurosci. Lett. 243, 147–151. 10.1016/s0304-3940(98)00088-3
    1. Rossini P. M., Tecchio F., Pizzella V., Lupoi D., Cassetta E., Pasqualetti P., et al. . (2001). Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage 14, 474–485. 10.1006/nimg.2000.0686
    1. Rouiller E. M., Moret V., Liang F. (1993). Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Somatosens. Mot. Res. 10, 269–289. 10.3109/08990229309028837
    1. Saiki A., Kimura R., Samura T., Fujiwara-Tsukamoto Y., Sakai Y., Isomura Y., et al. . (2014). Different modulation of common motor information in rat primary and secondary motor cortices. PLoS One 9:e98662. 10.1371/journal.pone.0098662
    1. Sale A., Berardi N., Maffei L. (2009). Enrich the environment to empower the brain. Trends Neurosci. 32, 233–239. 10.1016/j.tins.2008.12.004
    1. Sandrini M., Cohen L. G. (2013). Noninvasive brain stimulation in neurorehabilitation. Handb. Clin. Neurol. 116, 499–524. 10.1016/b978-0-444-53497-2.00040-1
    1. Schaefer S. Y., Hengge C. R. (2016). Testing the concurrent validity of a naturalistic upper extremity reaching task. Exp. Brain Res. 234, 229–240. 10.1007/s00221-015-4454-y
    1. Schambra H. M., Abe M., Luckenbaugh D. A., Reis J., Krakauer J. W., Cohen L. G. (2011). Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J. Neurophysiol. 106, 652–661. 10.1152/jn.00210.2011
    1. Schiene K., Bruehl C., Zilles K., Qü M., Hagemann G., Kraemer M., et al. . (1996). Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J. Cereb. Blood Flow Metab. 16, 906–914. 10.1097/00004647-199609000-00014
    1. Schmidt H., Hesse S., Bernhardt R., Krüger J. (2005). HapticWalker—A novel haptic foot device. ACM Trans. Appl. Percept. 2, 166–180. 10.1145/1060581.1060589
    1. Schwartz I., Sajin A., Fisher I., Neeb M., Shochina M., Katz-Leurer M., et al. . (2009). The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R 1, 516–523. 10.1016/j.pmrj.2009.03.009
    1. Sgherri G., Lamola G., Fanciullacci C., Barsotti M., Sotgiu E., Leonardis D., et al. (2017). “Rationale of an integrated robotic approach for upper limb functional rehabilitation,” in Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems and Biorobotics, (Vol. 15) eds Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. (Berlin: Springer International Publishing; ), 519–523.
    1. Sharp K. G., Duarte J. E., Gebrekristos B., Perez S., Steward O., Reinkensmeyer D. J. (2016). Robotic rehabilitator of the rodent upper extremity: a system and method for assessing and training forelimb force production after neurological injury. J. Neurotrauma 33, 460–467. 10.1089/neu.2015.3987
    1. Silasi G., Murphy T. H. (2014). Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83, 1354–1368. 10.1016/j.neuron.2014.08.052
    1. Silvanto J., Pascual-Leone A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topogr. 21, 1–10. 10.1007/s10548-008-0067-0
    1. Sloan A. M., Fink M. K., Rodriguez A. J., Lovitz A. M., Khodaparast N., Rennaker R. L., et al. . (2015). A within-animal comparison of skilled forelimb assessments in rats. PLoS One 10:e0141254. 10.1371/journal.pone.0141254
    1. Soleman S., Yip P. K., Duricki D. A., Moon L. D. F. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 135, 1210–1223. 10.1093/brain/aws027
    1. Song Y. S., Hogan N. (2015). A novel interactive exoskeletal robot for overground locomotion studies in rats. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 591–599. 10.1109/tnsre.2015.2396852
    1. Spalletti C., Lai S., Mainardi M., Panarese A., Ghionzoli A., Alia C., et al. . (2014). A robotic system for quantitative assessment and poststroke training of forelimb retraction in mice. Neurorehabil. Neural Repair 28, 188–196. 10.1177/1545968313506520
    1. Sporns O., Tononi G., Kötter R. (2005). The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1:e42. 10.1371/journal.pcbi.0010042
    1. Stefan K., Kunesch E., Cohen L. G., Benecke R., Classen J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584. 10.1093/brain/123.3.572
    1. Stroemer R. P., Kent T. A., Hulsebosch C. E. (1993). Acute increase in expression of growth associated protein GAP-43 following cortical ischemia in rat. Neurosci. Lett. 162, 51–54. 10.1016/0304-3940(93)90557-2
    1. Takahashi C. D., Der-Yeghiaian L., Le V., Motiwala R. R., Cramer S. C. (2008). Robot-based hand motor therapy after stroke. Brain 131, 425–437. 10.1093/brain/awm311
    1. Takatsuru Y., Fukumoto D., Yoshitomo M., Nemoto T., Tsukada H., Nabekura J. (2009). Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J. Neurosci. 29, 10081–10086. 10.1523/JNEUROSCI.1638-09.2009
    1. Takeuchi N., Chuma T., Matsuo Y., Watanabe I., Ikoma K. (2005). Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36, 2681–2686. 10.1161/01.str.0000189658.51972.34
    1. Takeuchi N., Izumi S.-I. (2012). Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012:359728. 10.1155/2012/359728
    1. Takeuchi N., Tada T., Chuma T., Matsuo Y., Ikoma K. (2007). Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke 38, 1551–1556. 10.1161/strokeaha.106.470187
    1. Takeuchi N., Tada T., Toshima M., Ikoma K. (2010). Correlation of motor function with transcallosal and intracortical inhibition after stroke. J. Rehabil. Med. 42, 962–966. 10.2340/16501977-0628
    1. Takeuchi N., Tada T., Toshima M., Matsuo Y., Ikoma K. (2009). Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J. Rehabil. Med. 41, 1049–1054. 10.2340/16501977-0454
    1. Taveggia G., Borboni A., Salvi L., Mulé C., Fogliaresi S., Villafañe J. H., et al. . (2016). Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur. J. Phys. Rehabil. Med. 52, 767–773.
    1. Tennant K. A., Kerr A. L., Adkins D. L., Donlan N., Thomas N., Kleim J. A., et al. . (2015). Age-dependent reorganization of peri-infarct “premotor” cortex with task-specific rehabilitative training in mice. Neurorehabil. Neural Repair 29, 193–202. 10.1177/1545968314541329
    1. Tononi G., Sporns O., Edelman G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U S A 91, 5033–5037. 10.1073/pnas.91.11.5033
    1. Touvykine B., Mansoori B. K., Jean-Charles L., Deffeyes J., Quessy S., Dancause N. (2016). The effect of lesion size on the organization of the ipsilesional and contralesional motor cortex. Neurorehabil. Neural Repair 30, 280–292. 10.1177/1545968315585356
    1. Traversa R., Cicinelli P., Bassi A., Rossini P. M., Bernardi G. (1997). Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 28, 110–117. 10.1161/01.str.28.1.110
    1. Tretriluxana J., Kantak S., Tretriluxana S., Wu A. D., Fisher B. E. (2013). Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke. Disabil. Rehabil. Assist. Technol. 8, 121–124. 10.3109/17483107.2012.737136
    1. Utz K. S., Dimova V., Oppenländer K., Kerkhoff G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia 48, 2789–2810. 10.1016/j.neuropsychologia.2010.06.002
    1. Vallone F., Lai S., Spalletti C., Panarese A., Alia C., Micera S., et al. . (2016). Post-stroke longitudinal alterations of inter-hemispheric correlation and hemispheric dominance in mouse pre-motor cortex. PLoS One 11:e0146858. 10.1371/journal.pone.0146858
    1. van den Brand R., Heutschi J., Barraud Q., DiGiovanna J., Bartholdi K., Huerlimann M., et al. . (2012). Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185. 10.1126/science.1217416
    1. van Meer M. P. A., van der Marel K., Otte W. M., Berkelbach van der Sprenkel J. W., Dijkhuizen R. M. (2010). Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J. Cereb. Blood Flow Metab. 30, 1707–1711. 10.1038/jcbfm.2010.124
    1. Várkuti B., Guan C., Pan Y., Phua K. S., Ang K. K., Kuah C. W. K., et al. . (2013). Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27, 53–62. 10.1177/1545968312445910
    1. Veneman J. F., Ekkelenkamp R., Kruidhof R., van der Helm F. C. T., van der Kooij H. (2005). “Design of a series elastic and bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training robots,” in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (Chicago, IL: IEEE), 496–499. 10.1109/ICORR.2005.1501150
    1. Vigaru B. C., Lambercy O., Schubring-Giese M., Hosp J. A., Schneider M., Osei-Atiemo C., et al. . (2013). A robotic platform to assess, guide and perturb rat forelimb movements. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 796–805. 10.1109/tnsre.2013.2240014
    1. Volz L. J., Rehme A. K., Michely J., Nettekoven C., Eickhoff S. B., Fink G. R., et al. . (2016). Shaping early reorganization of neural networks promotes motor function after stroke. Cereb. Cortex 26, 2882–2894. 10.1093/cercor/bhw034
    1. Wagner T. H., Lo A. C., Peduzzi P., Bravata D. M., Huang G. D., Krebs H. I., et al. . (2011). An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke 42, 2630–2632. 10.1161/STROKEAHA.110.606442
    1. Wahl A.-S., Schwab M. E. (2014). Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front. Hum. Neurosci. 8:381. 10.3389/fnhum.2014.00381
    1. Ward N. (2011). Assessment of cortical reorganisation for hand function after stroke. J. Physiol. 589, 5625–5632. 10.1113/jphysiol.2011.220939
    1. Ward N. S., Brown M. M., Thompson A. J., Frackowiak R. S. J. (2003). Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126, 2476–2496. 10.1093/brain/awg245
    1. Ward N. S., Cohen L. G. (2004). Mechanisms underlying recovery of motor function after stroke. Arch. Neurol. 61, 1844–1848. 10.1001/archneur.61.12.1844
    1. Werner C., von Frankenberg S., Treig T., Konrad M., Hesse S. (2002). Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 33, 2895–2901. 10.1161/01.str.0000035734.61539.f6
    1. Wessel M. J., Zimerman M., Hummel F. C. (2015). Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front. Hum. Neurosci. 9:265. 10.3389/fnhum.2015.00265
    1. Westlake K. P., Hinkley L. B., Bucci M., Guggisberg A. G., Byl N., Findlay A. M., et al. . (2012). Resting state α-band functional connectivity and recovery after stroke. Exp. Neurol. 237, 160–169. 10.1016/j.expneurol.2012.06.020
    1. Westlake K. P., Patten C. (2009). Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J. Neuroeng. Rehabil. 6:18. 10.1186/1743-0003-6-18
    1. Witte O. W., Bidmon H. J., Schiene K., Redecker C., Hagemann G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 1149–1165. 10.1097/00004647-200008000-00001
    1. Wolters A., Sandbrink F., Schlottmann A., Kunesch E., Stefan K., Cohen L. G., et al. . (2003). A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 89, 2339–2345. 10.1152/jn.00900.2002
    1. Wu W., Sun J., Jin Z., Guo X., Qiu Y., Zhu Y., et al. . (2011). Impaired neuronal synchrony after focal ischemic stroke in elderly patients. Clin. Neurophysiol. 122, 21–26. 10.1016/j.clinph.2010.06.003
    1. Zeiler S. R., Krakauer J. W. (2013). The interaction between training and plasticity in the poststroke brain. Curr. Opin. Neurol. 26, 609–616. 10.1097/WCO.0000000000000025
    1. Ziemann U., Rothwell J. C., Ridding M. C. (1996). Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. 496, 873–881. 10.1113/jphysiol.1996.sp021734
    1. Zrenner C., Belardinelli P., Müller-Dahlhaus F., Ziemann U. (2016). Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Front. Cell. Neurosci. 10:92. 10.3389/fncel.2016.00092

Source: PubMed

3
Abonnere