Recovery after brain injury: mechanisms and principles

Randolph J Nudo, Randolph J Nudo

Abstract

The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies.

Keywords: axonal sprouting; motor cortex; motor learning; recovery; stroke; traumatic brain injury.

Figures

Figure 1
Figure 1
Representation of distal forelimb movements in primary motor cortex (area 4) of a squirrel monkey. Under ketamine sedation, movements were evoked by intracortical microstimulation at each of 321 sites (small white dots) located approximately 250 μm apart. The distal forelimb representation is comprised of digit (red), wrist (w/fa; green), forearm (green) movements, as well as combinations of single-joint movements (yellow). This fractionated pattern of movement representations is due to the intermingling of corticospinal neurons that project to different subsets of motor neurons (Milliken et al., 2013).
Figure 2
Figure 2
Representation of distal forelimb representations in motor cortex after digit skill training as defined by intracortical microstimulation. Digit areas (red) expand after only 12 days of training. Combination movements that reflect the individual kinematics that the monkey employs also expand their representations. (A) Pre-training map. (B) Post-training map. (C) Still images of squirrel monkey retrieving food pellets from small wells (Nudo et al., 1996a).
Figure 3
Figure 3
Differential effects of skill vs. use. (A) ICMS-derived motor map (digit, red; wrist, green; elbow/shoulder, light blue) of a rat that learned a skilled reaching movement. (B) ICMS-derived motor map of a rat that learned to press a bar. The two forelimb areas are outlined in white. The caudal forelimb area (CFA) is separated from the rostral forelimb area (RFA) by a band of head/neck representations (yellow). The hindlimb area (HLA) is shown in dark blue and nonresponsive sites in gray. (C) Note the enlarged digit and wrist/forearm representations in the skilled reaching condition (SRC), and enlarged should representation in the unskilled reaching condition (URC, bar press). (D) In the CFA, synapses per neuron were significantly increased (*p < 0.05), but no changes occurred in RFA or HLA (Kleim et al., 2002a).
Figure 4
Figure 4
Reorganization of the rat premotor cortex after controlled cortical impact in the primary motor cortex. (A) Coronal section through the primary motor cortex (caudal forelimb area, or CFA) of a rat approximately one month after a controlled cortical impact. Impactor tip dimension and shape is shown in the inset. (B) Behavioral performance on a single-pellet retrieval task before and after the injury (*p < 0.05). (C) Alteration in motor maps in the rat premotor cortex (rostral forelimb area, or RFA) approximately one month after a controlled cortical impact. In the premotor area that was spared by the lesion, digit representations contracted, while proximal representations expanded. This suggests that the behavioral recovery that was observed was due to compensatory kinematic patterns rather than true recovery (Nishibe et al., 2010).
Figure 5
Figure 5
Functional map changes in forelimb (sFL) and hindlimb (sHL) somatosensory cortex after a focal infarct in mouse. Thalamic projections (arrows) and intracortical connections (double arrows) are also shown. (A) Normal somatosensory representation of sFL and sHL. (B) Within hours after focal infarct (gray), yellow areas show reduced sensory specificity, responding to both FL and HL stimulation. (C) Over the ensuing weeks, growth-promoting processes are triggered. Local axonal sprouting (double-headed arrows), dendritic spine expansion, and synaptogenesis occurs in the peri-infarct cortex. (D) Several weeks after stroke, specificity in sensory responses returns. Neurons that were formerly responsive to stimulation of hindlimb become responsive to forelimb stimulation (Murphy and Corbett, 2009).
Figure 6
Figure 6
Rewiring of corticocortical connections after ischemic infarct. (A) In normal healthy squirrel monkeys, the primary motor cortex (M1) has dense reciprocal connections with both the premotor cortex (PMv, PMd, SMA) as well as the primary somatosensory cortex (S1) and the second somatosensory area (S2). (B) In addition to M1, the ventral premotor cortex (PMv) has dense connections with a rostral area called pre-PMv. PMv has moderate connections with S2, but negligible connections with S1. (C) Several weeks after an ischemic infarct in M1, axons originating in PMv can be seen making sharp bends and avoiding the infarct area, as shown in this tract-tracing study. (D) A low-magnification plot of axons within the section show that the axons originating from PMv course around the central sulcus. Substantial terminal bouton labeling (not shown) appears in S1 (areas 1 and 2). The blue line in (B) signifies the de novo pathway that forms after the lesion (Dancause et al., 2005).
Figure 7
Figure 7
Effects of disuse on motor maps in the absence of injury. The preferred forelimbs of normal, healthy adult squirrel monkeys were placed in soft, restrictive casts for periods up to 5 months. ICMS mapping studies showed a progressive decrease in digit representation and a progressive increase in wrist/forearm representation. These effects were reversible after removal of the cast. These studies demonstrate that disuse has a substantial impact on motor cortex representations independent of the injury-induced disuse and neuropathological changes associated with stroke or traumatic injury (Milliken et al., 2013).

References

    1. Allred R. P., Jones T. A. (2008). Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Exp. Neurol. 210, 172–181 10.1016/j.expneurol.2007.10.010
    1. Allred R. P., Maldonado M. A., Hsu J.e., Jones T. A. (2005). Training the “less-affected” forelimb after unilateral cortical infarcts interferes with functional recovery of the impaired forelimb in rats. Restor. Neurol. Neurosci. 23, 297–302
    1. Aroniadou V. A., Keller A. (1993). The patterns and synaptic properties of horizontal intracortical connections in the rat motor cortex. J. Neurophysiol. 70, 1553–1569
    1. Biernaskie J., Szymanska A., Windle V., Corbett D. (2005). Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur. J. Neurosci. 21, 989–999 10.1111/j.1460-9568.2005.03899.x
    1. Birkenmeier R. L., Prager E. M., Lang C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil. Neural Repair 24, 620–635 10.1177/1545968310361957
    1. Brown C. E., Boyd J. D., Murphy T. H. (2010). Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J. Cereb. Blood Flow Metab. 30, 783–791 10.1038/jcbfm.2009.241
    1. Brown C. E., Li P., Boyd J. D., Delaney K. R., Murphy T. H. (2007). Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J. Neurosci. 27, 4101–4109 10.1523/JNEUROSCI.4295-06.2007
    1. Brown C. E., Murphy T. H. (2008). Livin' on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery. Neuroscientist 14, 139–146 10.1177/1073858407309854
    1. Bury S. D., Jones T. A. (2004). Facilitation of motor skill learning by callosal denervation or forced forelimb use in adult rats. Behav. Brain Res. 150, 43–53 10.1016/S0166-4328(03)00253-5
    1. Butefisch C. M., Kleiser R., Seitz R. J. (2006). Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. J. Physiol. Paris 99, 437–454 10.1016/j.jphysparis.2006.03.001
    1. Capaday C., Ethier C., Van Vreeswijk C., Darling W. G. (2013). On the functional organization and operational principles of the motor cortex. Front. Neural Circuits 7:66 10.3389/fncir.2013.00066
    1. Carey J. R., Kimberley T. J., Lewis S. M., Auerbach E. J., Dorsey L., Rundquist P., et al. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125(Pt 4), 773–788 10.1093/brain/awf091
    1. Carmichael S. T. (2006). Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742 10.1002/ana.20845
    1. Carmichael S. T., Chesselet M. F. (2002). Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J. Neurosci. 22, 6062–6070
    1. Cheung V. C., Deboer C., Hanson E., Tunesi M., D'Onofrio M., Arisi I., et al. (2013). Gene expression changes in the motor cortex mediating motor skill learning. PLoS ONE 8:e61496 10.1371/journal.pone.0061496
    1. Chollet F., DiPiero V., Wise R. J., Brooks D. J., Dolan R. J., Frackowiak R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol. 29, 63–71 10.1002/ana.410290112
    1. Cirstea M. C., Levin M. F. (2000). Compensatory strategies for reaching in stroke. Brain 123(Pt 5), 940–953 10.1093/brain/123.5.940
    1. Clarkson A. N., Lopez-Valdes H. E., Overman J. J., Charles A. C., Brennan K. C., Thomas Carmichael S. (2013). Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. J. Cereb. Blood Flow Metab. 33, 716–723 10.1038/jcbfm.2013.7
    1. Cooke E. V., Mares K., Clark A., Tallis R. C., Pomeroy V. M. (2010). The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med. 8:60 10.1186/1741-7015-8-60
    1. Cramer S. C. (2000). Stroke recovery: how the computer reprograms itself. Neuronal plasticity: the key to stroke recovery. Kananskis, Alberta, Canada, 19-22 March 2000. Mol. Med. Today 6, 301–303 10.1016/S1357-4310(00)01744-5
    1. Cramer S. C., Nelles G., Benson R. R., Kaplan J. D., Parker R. A., Kwong K. K., et al. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527 10.1161/01.STR.28.12.2518
    1. Dancause N., Barbay S., Frost S. B., Plautz E. J., Chen D., Zoubina E. V., et al. (2005). Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 10.1523/JNEUROSCI.3256-05.2005
    1. Enright L. E., Zhang S., Murphy T. H. (2007). Fine mapping of the spatial relationship between acute ischemia and dendritic structure indicates selective vulnerability of layer V neuron dendritic tufts within single neurons in vivo. J. Cereb. Blood Flow Metab. 27, 1185–1200 10.1038/sj.jcbfm.9600428
    1. Fridman E. A., Hanakawa T., Chung M., Hummel F., Leiguarda R. C., Cohen L. G. (2004). Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127(Pt 4), 747–758 10.1093/brain/awh082
    1. Friel K. M., Barbay S., Frost S. B., Plautz E. J., Hutchinson D. M., Stowe A. M., et al. (2005). Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation. J. Neurophysiol. 94, 1312–1324 10.1152/jn.01251.2004
    1. Frost S. B., Barbay S., Friel K. M., Plautz E. J., Nudo R. J. (2003). Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J. Neurophysiol. 89, 3205–3214 10.1152/jn.01143.2002
    1. Glees P., Cole J. (1949). The reappearance of coordinated movements of the hand after lesions in the hand area of the motor cortex of the rhesus monkey. J. Physiol. 108, 33
    1. Griffin D. M., Hudson H. M., Belhaj-Saif A., Cheney P. D. (2009). Stability of output effects from motor cortex to forelimb muscles in primates. J. Neurosci. 29, 1915–1927 10.1523/JNEUROSCI.4831-08.2009
    1. Hammond G. (2002). Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci. Biobehav. Rev. 26, 285–292 10.1016/S0149-7634(02)00003-9
    1. Harms K. J., Rioult-Pedotti M. S., Carter D. R., Dunaevsky A. (2008). Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex. J. Neurosci. 28, 5686–5690 10.1523/JNEUROSCI.0584-08.2008
    1. Harrison T. C., Silasi G., Boyd J. D., Murphy T. H. (2013). Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice. Stroke 44, 2300–2306 10.1161/STROKEAHA.113.001272
    1. Hess G., Aizenman C. D., Donoghue J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol. 75, 1765–1778
    1. Hosp J. A., Luft A. R. (2013). Dopaminergic meso-cortical projections to M1: role in motor learning and motor cortex plasticity. Front. Neurol. 4:145 10.3389/fneur.2013.00145
    1. Hsieh Y. W., Wu C. Y., Liao W. W., Lin K. C., Wu K. Y., Lee C. Y. (2011). Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabil. Neural Repair 25, 503–511 10.1177/1545968310394871
    1. Humm J. L., Kozlowski D. A., Bland S. T., James D. C., Schallert T. (1999). Use-dependent exaggeration of brain injury: is glutamate involved? Exp. Neurol. 157, 349–358 10.1006/exnr.1999.7061
    1. Huntley G. W., Jones E. G. (1991). Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J. Neurophysiol. 66, 390–413
    1. Jackson A., Mavoori J., Fetz E. E. (2006). Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 10.1038/nature05226
    1. Jaillard A., Martin C. D., Garambois K., Lebas J. F., Hommel M. (2005). Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain 128(Pt 5), 1122–1138 10.1093/brain/awh456
    1. Jones E. G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex 3, 361–372 10.1093/cercor/3.5.361-a
    1. Jones T. A., Allred R. P., Jefferson S. C., Kerr A. L., Woodie D. A., Cheng S. Y., et al. (2013). Motor system plasticity in stroke models: intrinsically use-dependent, unreliably useful. Stroke 44 6 Suppl. 1, S104–S106 10.1161/STROKEAHA.111.000037
    1. Jones T. A., Chu C. J., Grande L. A., Gregory A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 19, 10153–10163
    1. Karni A., Meyer G., Rey-Hipolito C., Jezzard P., Adams M. M., Turner R., et al. (1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. U.S.A. 95, 861–868 10.1073/pnas.95.3.861
    1. Kerr A. L., Wolke M. L., Bell J. A., Jones T. A. (2013). Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice. Behav. Brain Res. 252, 180–187 10.1016/j.bbr.2013.05.062
    1. Kleim J. A., Barbay S., Cooper N. R., Hogg T. M., Reidel C. N., Remple M. S., et al. (2002a). Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77, 63–77 10.1006/nlme.2000.4004
    1. Kleim J. A., Freeman J. H., Jr., Bruneau R., Nolan B. C., Cooper N. R., Zook A., et al. (2002b). Synapse formation is associated with memory storage in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 99, 13228–13231 10.1073/pnas.202483399
    1. Kleim J. A., Barbay S., Nudo R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80, 3321–3325
    1. Kleim J. A., Hogg T. M., VandenBerg P. M., Cooper N. R., Bruneau R., Remple M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci. 24, 628–633 10.1523/JNEUROSCI.3440-03.2004
    1. Knapp H. D., Taub E., Berman A. J. (1963). Movements in monkeys with deafferented forelimbs. Exp. Neurol. 7, 305–315 10.1016/0014-4886(63)90077-3
    1. Kozlowski D. A., James D. C., Schallert T. (1996). Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J. Neurosci. 16, 4776–4786
    1. Lashley K. S. (1930). Basic neural mechanisms in behavior. Physiol. Rev. 37, 1–24
    1. Lee Y. S., Lin C. Y., Robertson R. T., Hsiao I., Lin V. W. (2004). Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J. Neuropathol. Exp. Neurol. 63, 233–245
    1. Lemon R. N., Griffiths J. (2005). Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve 32, 261–279 10.1002/mus.20333
    1. Liepert J., Graef S., Uhde I., Leidner O., Weiller C. (2000). Training-induced changes of motor cortex representations in stroke patients. Acta Neurol. Scand. 101, 321–326 10.1034/j.1600-0404.2000.90337a.x
    1. Liepert J., Miltner W. H., Bauder H., Sommer M., Dettmers C., Taub E., et al. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett. 250, 5–8 10.1016/S0304-3940(98)00386-3
    1. Liu R. R., Murphy T. H. (2009). Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: a two-photon imaging study. J. Biol. Chem. 284, 36109–36117 10.1074/jbc.M109.055301
    1. Liu Y., Rouiller E. M. (1999). Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp. Brain Res. 128, 149–159 10.1007/S002210050830
    1. Loubinoux I., Carel C., Pariente J., Dechaumont S., Albucher J. F., Marque P., et al. (2003). Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20, 2166–2180 10.1016/j.neuroimage.2003.08.017
    1. Matsuda F., Sakakima H., Yoshida Y. (2011). The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol. 201, 275–287 10.1111/j.1748-1708.2010.02174.x
    1. Milliken G. W., Plautz E. J., Nudo R. J. (2013). Distal forelimb representations in primary motor cortex are redistributed after forelimb restriction: a longitudinal study in adult squirrel monkeys. J. Neurophysiol. 109, 1268–1282 10.1152/jn.00044.2012
    1. Miyai I., Suzuki T., Kang J., Kubota K., Volpe B. T. (1999). Middle cerebral artery stroke that includes the premotor cortex reduces mobility outcome. Stroke 30, 1380–1383 10.1161/01.STR.30.7.1380
    1. Miyai I., Yagura H., Hatakenaka M., Oda I., Konishi I., Kubota K. (2003). Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34, 2866–2870 10.1161/01.STR.0000100166.81077.8A
    1. Mohajerani M. H., Aminoltejari K., Murphy T. H. (2011). Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc. Natl. Acad. Sci. U.S.A. 108, E183–E191 10.1073/pnas.1101914108
    1. Monfils M. H., Plautz E. J., Kleim J. A. (2005). In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 11, 471–483 10.1177/1073858405278015
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872 10.1038/nrn2735
    1. Murphy T. H., Li P., Betts K., Liu R. (2008). Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J. Neurosci. 28, 1756–1772 10.1523/JNEUROSCI.5128-07.2008
    1. Napieralski J. A., Butler A. K., Chesselet M. F. (1996). Anatomical and functional evidence for lesion-specific sprouting of corticostriatal input in the adult rat. J. Comp. Neurol. 373, 484–497 10.1002/(SICI)1096-9861(19960930)373:4<484::AID-CNE2>;2-Y
    1. Nelles G., Spiekermann G., Jueptner M., Leonhardt G., Muller S., Gerhard H., et al. (1999). Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke 30, 1510–1516 10.1161/01.STR.30.8.1510
    1. Nishibe M., Barbay S., Guggenmos D., Nudo R. J. (2010). Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J. Neurotrauma 27, 2221–2232 10.1089/neu.2010.1456
    1. Nudo R. J., Jenkins W. M., Merzenich M. M., Prejean T., Grenda R. (1992). Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J. Neurosci. 12, 2918–2947
    1. Nudo R. J., Milliken G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144–2149
    1. Nudo R. J., Milliken G. W., Jenkins W. M., Merzenich M. M. (1996a). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807
    1. Nudo R. J., Wise B. M., SiFuentes F., Milliken G. W. (1996b). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794
    1. Plautz E. J., Milliken G. W., Nudo R. J. (2000). Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol. Learn. Mem. 74, 27–55 10.1006/nlme.1999.3934
    1. Recanzone G. H., Merzenich M. M., Dinse H. R. (1992). Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cereb. Cortex 2, 181–196 10.1093/cercor/2.3.181
    1. Redecker C., Luhmann H. J., Hagemann G., Fritschy J. M., Witte O. W. (2000). Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J. Neurosci. 20, 5045–5053
    1. Remple M. S., Bruneau R. M., VandenBerg P. M., Goertzen C., Kleim J. A. (2001). Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav. Brain Res. 123, 133–141 10.1016/S0166-4328(01)00199-1
    1. Rioult-Pedotti M. S., Friedman D., Hess G., Donoghue J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci. 1, 230–234 10.1038/678
    1. Seitz R. J., Kleiser R., Butefisch C. M. (2005). Reorganization of cerebral circuits in human brain lesion. Acta Neurochir. Suppl. 93, 65–70 10.1007/3-211-27577-0-9
    1. Sigler A., Murphy T. H. (2010). In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke 41 10 Suppl., S117–S123 10.1161/STROKEAHA.110.594648
    1. Stroemer R. P., Kent T. A., Hulsebosch C. E. (1995). Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26, 2135–2144 10.1161/01.STR.26.11.2135
    1. Stroemer R. P., Kent T. A., Hulsebosch C. E. (1998). Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke 29, 2381–2393 discussion: 2393–2385.
    1. Taub E. (1977). Movement in nonhuman primates deprived of somatosensory feedback. Exerc. Sport Sci. Rev. 4, 335–374
    1. Taub E., Crago J. E., Uswatte G. (1998). Constraint-Induced (CI) Therapy: a new approach to treatment in physical rehabilitation. Rehabil. Psychol. 43, 152–170 10.1037/0090-5550.43.2.152
    1. Teasell R., Bayona N. A., Bitensky J. (2005). Plasticity and reorganization of the brain post stroke. Top. Stroke Rehabil. 12, 11–26 10.1310/6AUM-ETYW-Q8XV-8XAC
    1. Traversa R., Cicinelli P., Bassi A., Rossini P. M., Bernardi G. (1997). Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 28, 110–117 10.1161/01.STR.28.1.110
    1. Uesaka N., Ruthazer E. S., Yamamoto N. (2006). The role of neural activity in cortical axon branching. Neuroscientist 12, 102–106 10.1177/1073858405281673
    1. Ungerleider L. G., Doyon J., Karni A. (2002). Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 78, 553–564 10.1006/nlme.2002.4091
    1. Urban E. T., 3rd., Bury S. D., Barbay H. S., Guggenmos D. J., Dong Y., Nudo R. J. (2012). Gene expression changes of interconnected spared cortical neurons 7 days after ischemic infarct of the primary motor cortex in the rat. Mol. Cell. Biochem. 369, 267–286 10.1007/s11010-012-1390-z
    1. Wang L., Conner J. M., Rickert J., Tuszynski M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc. Natl. Acad. Sci. U.S.A. 108, 2545–2550 10.1073/pnas.1014335108
    1. Wei L., Erinjeri J. P., Rovainen C. M., Woolsey T. A. (2001). Collateral growth and angiogenesis around cortical stroke. Stroke 32, 2179–2184 10.1161/hs0901.094282
    1. Weiller C., Chollet F., Friston K. J., Wise R. J., Frackowiak R. S. (1992). Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol. 31, 463–472 10.1002/ana.410310502
    1. Weiller C., Ramsay S. C., Wise R. J., Friston K. J., Frackowiak R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann. Neurol. 33, 181–189 10.1002/ana.410330208
    1. Whishaw I. Q., Pellis S. M., Gorny B. P., Pellis V. C. (1991). The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav. Brain Res. 42, 77–91 10.1016/S0166-4328(05)80042-7
    1. Witte O. W., Stoll G. (1997). Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Adv. Neurol. 73, 207–227
    1. Wolf S. L., Winstein C. J., Miller J. P., Taub E., Uswatte G., Morris D., et al. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 10.1001/jama.296.17.2095
    1. Woodlee M. T., Schallert T. (2004). The interplay between behavior and neurodegeneration in rat models of Parkinson's disease and stroke. Restor. Neurol. Neurosci. 22, 153–161
    1. Xu T., Yu X., Perlik A. J., Tobin W. F., Zweig J. A., Tennant K., et al. (2009). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 10.1038/nature08389
    1. Zanette G., Manganotti P., Fiaschi A., Tamburin S. (2004). Modulation of motor cortex excitability after upper limb immobilization. Clin. Neurophysiol. 115, 1264–1275 10.1016/j.clinph.2003.12.033
    1. Zhang S., Boyd J., Delaney K., Murphy T. H. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J. Neurosci. 25, 5333–5338 10.1523/JNEUROSCI.1085-05.2005
    1. Zhang S., Murphy T. H. (2007). Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol. 5:e119 10.1371/journal.pbio.0050119

Source: PubMed

3
Abonnere