Brain connectomic associations with traditional Chinese medicine diagnostic classification of major depressive disorder: a diffusion tensor imaging study

Lan-Ying Liu, Xiao-Pei Xu, Li-Yuan Luo, Chun-Qing Zhu, Ya-Ping Li, Pei-Rong Wang, Yuan-Yuan Zhang, Chun-Yu Yang, Hong-Tao Hou, Yu-Lin Cao, Gang Wang, Edward S Hui, Zhang-Jin Zhang, Lan-Ying Liu, Xiao-Pei Xu, Li-Yuan Luo, Chun-Qing Zhu, Ya-Ping Li, Pei-Rong Wang, Yuan-Yuan Zhang, Chun-Yu Yang, Hong-Tao Hou, Yu-Lin Cao, Gang Wang, Edward S Hui, Zhang-Jin Zhang

Abstract

Background: Major depressive disorder (MDD) is highly heterogeneous in pathogenesis and manifestations. Further classification may help characterize its heterogeneity. We previously have shown differential metabolomic profiles of traditional Chinese medicine (TCM) diagnostic subtypes of MDD. We further determined brain connectomic associations with TCM subtypes of MDD.

Methods: In this naturalistic study, 44 medication-free patients with a recurrent depressive episode were classified into liver qi stagnation (LQS, n = 26) and Heart and Spleen Deficiency (HSD, n = 18) subtypes according to TCM diagnosis. Healthy subjects (n = 28) were included as controls. Whole-brain white matter connectivity was analyzed on diffusion tensor imaging.

Results: The LQS subtype showed significant differences in multiple network metrics of the angular gyrus, middle occipital gyrus, calcarine sulcus, and Heschl's gyrus compared to the other two groups. The HSD subtype had markedly greater regional connectivity of the insula, parahippocampal gyrus, and posterior cingulate gyrus than the other two groups, and microstructural abnormalities of the frontal medial orbital gyrus and middle temporal pole. The insular betweenness centrality was strongly inversely correlated with the severity of depression and dichotomized the two subtypes at the optimal cutoff value with acceptable sensitivity and specificity.

Conclusions: The LQS subtype is mainly characterized by aberrant connectivity of the audiovisual perception-related temporal-occipital network, whereas the HSD subtype is more closely associated with hyperconnectivity and microstructural abnormalities of the limbic-paralimbic network. Insular connectivity may serve a biomarker for TCM-based classification of depression.Trial registration Registered at http://www.clinicaltrials.gov (NCT02346682) on January 27, 2015.

Keywords: Classification; Connectome; Diffusion tensor imaging; Major depressive disorder; Traditional Chinese medicine.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Recruitment profile. LQS liver qi stagnation, HSD heart spleen deficiency
Fig. 2
Fig. 2
Diffusion tensor imaging based brain connectomic analysis. Liver qi stagnation (LQS) subtype versus healthy controls (HC) (a), Heart Spleen Deficiency (HSD) subtype versus HC (b), and HSD versus LQS (c). Red and blue filled circles indicate hyper- and hypo-connectivity, respectively, as compared with HC (a, b) or LQS (c)
Fig. 3
Fig. 3
Diffusion tensor imaging white matter microstructural analysis. Significant decreases in fractional anisotropy (FA) of the frontal medial orbital gyrus (ORBmed, a) and the middle temporal pole (TPOmid, b indicated with blue) and significant increase in mean diffusivity (MD) of the frontal medial orbital gyrus (ORBmed, c indicated with red) in HSD subtype compared to the other two groups
Fig. 4
Fig. 4
Insular betweenness centrality value is significantly inversely correlated with HAMD-24 score in a pool of liver qi stagnation (LQS) and heart spleen deficiency (HSD) subtypes (a). The two subtypes are well dichotomized at a cutoff value of 295 insular betweenness centrality with a sensitivity of 0.667 and a specificity of 0.769 (b)

References

    1. Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos T, et al. Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med. 2012;25:1–11. doi: 10.1017/S0033291712001511.
    1. Qaseem A, Barry MJ, Kansagara D, Clinical Guidelines Committee of the American College of Physicians Nonpharmacologic versus pharmacologic treatment of adult patients with major depressive disorder: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2016;164:350–359. doi: 10.7326/M15-2570.
    1. Kennedy SH. Core symptoms of major depressive disorder: relevance to diagnosis and treatment. Dialogues Clin Neurosci. 2008;10:271–277.
    1. van Loo HM, de Jonge P, Romeijn JW, Kessler RC, Schoevers RA. Data-driven subtypes of major depressive disorder: a systematic review. BMC Med. 2012;10:156. doi: 10.1186/1741-7015-10-156.
    1. Cheung F. Modern TCM: enter the clinic. Nature. 2011;480:S94–S95. doi: 10.1038/480S94a.
    1. Chen Z, Hu S, Zhang H, Zhang H, Zheng L, Li X. Study on criteria for commonly seen TCM syndrome of depression. JTCM. 2005;46:47–49.
    1. Guo R, Yu M, Wang JL, Han AQ, Lu M, Zhang YL, et al. Establishing a TCM pattern element identification scale for depression. J Beijing Univ of TCM. 2015;38:561–565.
    1. Hu SY, Wang SE, Zhang CH. Relationship between symptom stratification and syndrome differentiation of traditional Chinese medicine for depressive episode. Zhong Xi Yi Jie He Xue Bao. 2011;9:933–936. doi: 10.3736/jcim20110902.
    1. Zhang YF, Han Y, Wang YZ, Zhang YF, Jia HX, Jin EH, et al. Characterization of resting-state fMRI-derived functional connectivity in patients with deficiency versus excess patterns of major depression. Complement Ther Med. 2015;23:7–13. doi: 10.1016/j.ctim.2014.12.010.
    1. Liu LY, Zhang HJ, Luo LY, Pu JB, Liang WQ, Zhu CQ, Li YP, Wang PR, Zhang YY, Yang CY, Zhang ZJ. Blood and urinary metabolomic evidence validating traditional Chinese medicine diagnostic classification of major depressive disorder. Chin Med. 2018;13:53. doi: 10.1186/s13020-018-0211-z.
    1. Jiang J, Zhao YJ, Hu XY, Du MY, Chen ZQ, Wu M, et al. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci. 2017;42:150–163. doi: 10.1503/jpn.150341.
    1. Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry. 2015;77:223–235. doi: 10.1016/j.biopsych.2014.08.009.
    1. Korgaonkar MS, Fornito A, Williams LM, Grieve SM. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry. 2014;76:567–574. doi: 10.1016/j.biopsych.2014.02.018.
    1. Ota M, Noda T, Sato N, Hattori K, Hori H, Sasayama D, et al. White matter abnormalities in major depressive disorder with melancholic and atypical features: a diffusion tensor imaging study. Psychiatry Clin Neurosci. 2015;69:360–368. doi: 10.1111/pcn.12255.
    1. Ambrosi E, Chiapponi C, Sani G, Manfredi G, Piras F, Caltagirone C, et al. White matter microstructural characteristics in bipolar I and bipolar II disorder: a diffusion tensor imaging study. J Affect Disord. 2016;189:176–183. doi: 10.1016/j.jad.2015.09.035.
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62. doi: 10.1136/jnnp.23.1.56.
    1. Xu X, Hui ES, Mok MY, Jian J, Lau CS, Mak HK. Structural brain network reorganization in patients with neuropsychiatric systemic lupus erythematosus. Am J Neuroradiol. 2017;38:64–70. doi: 10.3174/ajnr.A4947.
    1. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45:S173–S186. doi: 10.1016/j.neuroimage.2008.10.055.
    1. Mori S, Crain B, Chacko V, Van Zijl P. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–269. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>;2-3.
    1. Brown JA, Rudie JD, Bandrowski A, Van Horn JD, Bookheimer SY. The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Front Neuroinform. 2012;6:28. doi: 10.3389/fninf.2012.00028.
    1. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077–1088. doi: 10.1002/mrm.10609.
    1. Bange F, Bathien N. Visual cognitive dysfunction in depression: an event-related potential study. Electroencephalogr Clin Neurophysiol. 1998;108:472–481. doi: 10.1016/S0168-5597(98)00024-0.
    1. Christ M, Michael N, Hihn H, Schüttke A, Konrad C, Baune BT, et al. Auditory processing of sine tones before, during and after ECT in depressed patients by fMRI. J Neural Transm (Vienna) 2008;115:1199–1211. doi: 10.1007/s00702-008-0036-5.
    1. Colich NL, Ho TC, Foland-Ross LC, Eggleston C, Ordaz SJ, Singh MK, et al. Hyperactivation in cognitive control and visual attention brain regions during emotional interference in adolescent depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:388–395. doi: 10.1016/j.bpsc.2016.09.001.
    1. Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Annu Rev Clin Psychol. 2010;6:285–312. doi: 10.1146/annurev.clinpsy.121208.131305.
    1. Capaldi VF, 2nd, Carr RB. Citalopram-induced hallucinations and delusions in a young adult. Gen Hosp Psychiatry. 2010;32(648):e1–e3. doi: 10.1016/j.genhosppsych.2010.07.008.
    1. Lai CH. Escitalopram-related visual and auditory hallucination in a non-dementia patient with depression. J Neuropsychiatry Clin Neurosci. 2012;24:E19. doi: 10.1176/appi.neuropsych.11100239.
    1. Monji A, Kato T, Mizoguchi Y, Horikawa H, Seki Y, Kanba S. Visual and auditory hallucinations during normal use of paroxetine for treatment of major depressive disorder. J Neuropsychiatry Clin Neurosci. 2011;23:E14–E15. doi: 10.1176/jnp.23.4.jnpe14.
    1. Waltereit R, Eifler S, Schirmbeck F, Zink M. Visual and auditory hallucinations associated with citalopram treatment. J Clin Psychopharmacol. 2013;33:583–584. doi: 10.1097/JCP.0b013e31829771ca.
    1. Yasui-Furukori N, Kaneko S. Hallucination induced by paroxetine discontinuation in patients with major depressive disorders. Psychiatry Clin Neurosci. 2011;65:384–385. doi: 10.1111/j.1440-1819.2011.02211.x.
    1. Miller CH, Hamilton JP, Sacchet MD, Gotlib IH. Meta-analysis of functional neuroimaging of major depressive disorder in youth. JAMA Psychiatry. 2015;72:1045–1053. doi: 10.1001/jamapsychiatry.2015.1376.
    1. Morgane PJ, Galler JR, Mokler DJ. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol. 2005;75:143–160. doi: 10.1016/j.pneurobio.2005.01.001.
    1. Kiehl KA. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Res. 2006;142:107–128. doi: 10.1016/j.psychres.2005.09.013.
    1. Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63. doi: 10.1016/B978-0-444-53860-4.00007-6.
    1. Gasquoine PG. Contributions of the insula to cognition and emotion. Neuropsychol Rev. 2014;24:77–87. doi: 10.1007/s11065-014-9246-9.
    1. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48:813–829. doi: 10.1016/S0006-3223(00)01020-9.
    1. Paulus MP, Stein MB. Interoception in anxiety and depression. Brain Struct Funct. 2010;214:451–463. doi: 10.1007/s00429-010-0258-9.
    1. Mizushima J, Sakurai H, Mizuno Y, Shinfuku M, Tani H, Yoshida K, et al. Melancholic and reactive depression: a reappraisal of old categories. BMC Psychiatry. 2013;13:311. doi: 10.1186/1471-244X-13-311.
    1. Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, et al. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Med. 2014;12:73. doi: 10.1186/1741-7015-12-73.
    1. Helm K, Viol K, Weiger TM, Tass PA, Grefkes C, Del Monte D, Schiepek G. Neuronal connectivity in major depressive disorder: a systematic review. Neuropsychiatr Dis Treat. 2018;2018(14):2715–2737. doi: 10.2147/NDT.S170989.
    1. Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging. 2007;25(6):969–977. doi: 10.1016/j.mri.2007.03.017.

Source: PubMed

3
Abonnere