Neural control of the lower urinary tract: peripheral and spinal mechanisms

L Birder, W de Groat, I Mills, J Morrison, K Thor, M Drake, L Birder, W de Groat, I Mills, J Morrison, K Thor, M Drake

Abstract

This review deals with individual components regulating the neural control of the urinary bladder. This article will focus on factors and processes involved in the two modes of operation of the bladder: storage and elimination. Topics included in this review include: (1) The urothelium and its roles in sensor and transducer functions including interactions with other cell types within the bladder wall ("sensory web"), (2) The location and properties of bladder afferents including factors involved in regulating afferent sensitization, (3) The neural control of the pelvic floor muscle and pharmacology of urethral and anal sphincters (focusing on monoamine pathways), (4) Efferent pathways to the urinary bladder, and (5) Abnormalities in bladder function including mechanisms underlying comorbid disorders associated with bladder pain syndrome and incontinence.

Figures

Fig. 1
Fig. 1
Hypothetical model depicting possible interactions between bladder afferent and efferent nerves, urothelial cells, smooth muscle, and myofibroblasts. Stimulation of urothelial receptors and channels can release mediators that target bladder nerves and other cell types; urothelial cells can also be targets for neurotransmitters released from nerves or other cell types. Urothelial cells can be activated by either autocrine (i.e., autoregulation) or paracrine (release from nearby nerves or other cells) mechanisms. Abbreviations: ACh, acetylcholine; AdR, adrenergic receptor; BR, bradykinin receptor; H+, proton; MR, muscarinic receptor; NE, norepinephrine; NGF, nerve growth factor; NR, neurokinin receptor; NicR, nicotinic receptor; NO, nitric oxide; P2R, purinergic 2 receptor unidentified subtype; P2X and P2Y, purinergic receptors; PG, prostaglandin; SP, substance P; Trk-A, receptor tyrosine kinase A, high affinity receptor for nerve growth factor; TRPs, transient potential channels.

Source: PubMed

3
Abonnere