Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle

R Boushel, E Gnaiger, P Schjerling, M Skovbro, R Kraunsøe, F Dela, R Boushel, E Gnaiger, P Schjerling, M Skovbro, R Kraunsøe, F Dela

Abstract

Aims/hypothesis: Insulin resistance and type 2 diabetes are associated with mitochondrial dysfunction. The aim of the present study was to test the hypothesis that oxidative phosphorylation and electron transport capacity are diminished in the skeletal muscle of type 2 diabetic subjects, as a result of a reduction in the mitochondrial content.

Materials and methods: The O(2) flux capacity of permeabilised muscle fibres from biopsies of the quadriceps in healthy subjects (n = 8; age 58 +/- 2 years [mean+/-SEM]; BMI 28 +/- 1 kg/m(2); fasting plasma glucose 5.4 +/- 0.2 mmol/l) and patients with type 2 diabetes (n = 11; age 62 +/- 2 years; BMI 32 +/- 2 kg/m(2); fasting plasma glucose 9.0 +/- 0.8 mmol/l) was measured by high-resolution respirometry.

Results: O(2) flux expressed per mg of muscle (fresh weight) during ADP-stimulated state 3 respiration was lower (p < 0.05) in patients with type 2 diabetes in the presence of complex I substrate (glutamate) (31 +/- 2 vs 43 +/- 3 pmol O(2) s(-1) mg(-1)) and in response to glutamate + succinate (parallel electron input from complexes I and II) (63 +/- 3 vs 85 +/- 6 pmol s(-1) mg(-1)). Further increases in O(2) flux capacity were observed in response to uncoupling by FCCP, but were again lower (p < 0.05) in type 2 diabetic patients than in healthy control subjects (86 +/- 4 vs 109 +/- 8 pmol s(-1) mg(-1)). However, when O(2) flux was normalised for mitochondrial DNA content or citrate synthase activity, there were no differences in oxidative phosphorylation or electron transport capacity between patients with type 2 diabetes and healthy control subjects.

Conclusions/interpretation: Mitochondrial function is normal in type 2 diabetes. Blunting of coupled and uncoupled respiration in type 2 diabetic patients can be attributed to lower mitochondrial content.

Figures

Fig. 1
Fig. 1
Glucose (a) and insulin (b) concentrations in venous plasma before (t = 0 min) and during an OGTT. The patients with type 2 diabetes had higher fasting glucose levels and were severely insulin resistant compared with healthy control subjects (*p < 0.05). Black and white symbols represent healthy control subjects and patients with type 2 diabetes, respectively
Fig. 2
Fig. 2
O2 flux in permeabilised skeletal muscle fibres from patients with type 2 diabetes and healthy control subjects. Data are shown as O2 flux per mg of tissue (a) and further normalised to the number of copies of mtDNA per μg of tissue ×10,000 (b). When data are expressed relative to mtDNA, any difference between the groups disappears. Data are means±SEM (*p < 0.05). Black and white bars represent healthy control subjects and patients with type 2 diabetes, respectively
Fig. 3
Fig. 3
a Respiratory control ratio for complex I (NADH supply from substrates glutamate + malate) measured as the ratio of O2 flux with (state 3) and without (state 2) ADP. b Electron transport capacity measured as O2 flux after FCCP-induced uncoupling relative to coupled O2 flux at state 3 with malate + glutamate + ADP + succinate (parallel electron input into both complex I and II). No significant difference between the groups was noted. Data are means±SEM

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12351431', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12351431/'}]}
    2. Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF01234508', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf01234508'}, {'type': 'PubMed', 'value': '908476', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/908476/'}]}
    2. Vondra K, Rath R, Bass A, Slabochová Z, Teisinger T, Vítek V (1977) Enzyme activities in quadriceps femoris muscle of obese diabetic male patients. Diabetologia 13:527–529
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11289047', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11289047/'}]}
    2. He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15894466', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15894466/'}]}
    2. Ørtenblad N, Mogensen M, Petersen I et al (2005) Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741:206–214
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9216960', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9216960/'}]}
    2. Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83:166–171
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1056/NEJMoa031314', 'is_inner': False, 'url': 'https://doi.org/10.1056/nejmoa031314'}, {'type': 'PMC', 'value': 'PMC2995502', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2995502/'}, {'type': 'PubMed', 'value': '14960743', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14960743/'}]}
    2. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/ng1180', 'is_inner': False, 'url': 'https://doi.org/10.1038/ng1180'}, {'type': 'PubMed', 'value': '12808457', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12808457/'}]}
    2. Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.1032913100', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.1032913100'}, {'type': 'PMC', 'value': 'PMC166252', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc166252/'}, {'type': 'PubMed', 'value': '12832613', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12832613/'}]}
    2. Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15983191', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15983191/'}]}
    2. Sparks LM, Xie H, Koza RA et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1152/ajpheart.00701.2003', 'is_inner': False, 'url': 'https://doi.org/10.1152/ajpheart.00701.2003'}, {'type': 'PubMed', 'value': '14693685', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14693685/'}]}
    2. Kuznetsov AV, Schneeberger S, Seiler R et al (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0034-5687(01)00307-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0034-5687(01)00307-3'}, {'type': 'PubMed', 'value': '11718759', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11718759/'}]}
    2. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1113/jphysiol.2003.043554', 'is_inner': False, 'url': 'https://doi.org/10.1113/jphysiol.2003.043554'}, {'type': 'PMC', 'value': 'PMC2343294', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2343294/'}, {'type': 'PubMed', 'value': '12897182', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12897182/'}]}
    2. Andersen JL, Schjerling P, Andersen LL, Dela F (2003) Resistance training and insulin action in humans: effects of de-training. J Physiol 551:1049–1058
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1172/JCI25151', 'is_inner': False, 'url': 'https://doi.org/10.1172/jci25151'}, {'type': 'PMC', 'value': 'PMC1280967', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1280967/'}, {'type': 'PubMed', 'value': '16284649', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16284649/'}]}
    2. Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15919781', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15919781/'}]}
    2. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16249430', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16249430/'}]}
    2. Scheede-Bergdahl C, Penkowa M, Hidalgo J et al (2005) Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes. Diabetes 54:3089–3094
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '4290225', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4290225/'}]}
    2. Holloszy JO (1967) Biochemical adaptations in muscle. J Biol Chem 242:2278–2282
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC292174', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc292174/'}, {'type': 'PubMed', 'value': '5096516', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5096516/'}]}
    2. Molé PA, Oscai LB, Holloszy JO (1971) Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidize fatty acids. J Clin Invest 50:2323–2330
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '173969', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/173969/'}]}
    2. Holloszy JO (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports 7:155–164
    1. Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Ann Rev Physiol 273–291
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1113/jphysiol.2002.034850', 'is_inner': False, 'url': 'https://doi.org/10.1113/jphysiol.2002.034850'}, {'type': 'PMC', 'value': 'PMC2342594', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2342594/'}, {'type': 'PubMed', 'value': '12563009', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12563009/'}]}
    2. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546:851–858
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12882902', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12882902/'}]}
    2. Short KR, Vittone JL, Bigelow ML et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9096977', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9096977/'}]}
    2. Pan XR, Li GW, Hu YH et al (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20:537–544
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1056/NEJMoa012512', 'is_inner': False, 'url': 'https://doi.org/10.1056/nejmoa012512'}, {'type': 'PMC', 'value': 'PMC1370926', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1370926/'}, {'type': 'PubMed', 'value': '11832527', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11832527/'}]}
    2. Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00400196', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00400196'}, {'type': 'PubMed', 'value': '1778354', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1778354/'}]}
    2. Eriksson K-F, Lindgärde F (1991) Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. Diabetologia 34:891–898
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1056/NEJM200105033441801', 'is_inner': False, 'url': 'https://doi.org/10.1056/nejm200105033441801'}, {'type': 'PubMed', 'value': '11333990', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11333990/'}]}
    2. Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7657022', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7657022/'}]}
    2. Dela F, Mikines KJ, Larsen JJ, Ploug T, Petersen LN, Galbo H (1995) Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training. Diabetes 44:1010–1020
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '14747278', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14747278/'}]}
    2. Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JFP, Dela F (2004) Strength training increases insulin-mediated glucose uptake, GLUT4 content and insulin signaling in skeletal muscle in patients with Type 2 diabetes. Diabetes 53:294–305
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8013748', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8013748/'}]}
    2. Dela F, Ploug T, Handberg A et al (1994) Physical training increases muscle GLUT-4 protein and mRNA in patients with NIDDM. Diabetes 43:862–865
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1113/jphysiol.2005.082669', 'is_inner': False, 'url': 'https://doi.org/10.1113/jphysiol.2005.082669'}, {'type': 'PMC', 'value': 'PMC1464439', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1464439/'}, {'type': 'PubMed', 'value': '15718261', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15718261/'}]}
    2. Wojtaszewski JF, Birk JB, Frosig C, Holten M, Pilegaard H, Dela F (2005) 5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564:563–573
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.metabol.2004.03.022', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.metabol.2004.03.022'}, {'type': 'PubMed', 'value': '15334390', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15334390/'}]}
    2. Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W et al (2004) Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism 53:1233–1242
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.55.03.06.db05-0677', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.55.03.06.db05-0677'}, {'type': 'PubMed', 'value': '16505240', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16505240/'}]}
    2. Sriwijitkamol A, Christ-Roberts C, Berria R et al (2006) Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 55:760–767
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.2006-0002', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.2006-0002'}, {'type': 'PubMed', 'value': '16684829', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16684829/'}]}
    2. Toledo FG, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 91:3224–3227
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '6511559', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/6511559/'}]}
    2. Coyle EF, Martin WH 3rd, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol 57:1857–1864
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '188815', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/188815/'}]}
    2. Booth FW, Holloszy JO (1977) Cytochrome c turnover in rat skeletal muscles. J Biol Chem 252:416–419
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '190867', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/190867/'}]}
    2. Henriksson J, Reitman JS (1977) Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand 99:91–97
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00429867', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00429867'}, {'type': 'PubMed', 'value': '4244686', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4244686/'}]}
    2. Bjorntorp P, Schersten T, Fagerberg SE (1967) Respiration and phosphorylation of mitochondria isolated from the skeletal muscle of diabetic and normal subjects. Diabetologia 3:346–352

Source: PubMed

3
Abonnere