Genetic Determinants of Neurobehavioral Responses to Caffeine Administration during Sleep Deprivation: A Randomized, Cross Over Study (NCT03859882)

Mégane Erblang, Fabien Sauvet, Catherine Drogou, Michaël Quiquempoix, Pascal Van Beers, Mathias Guillard, Arnaud Rabat, Aurélie Trignol, Cyprien Bourrilhon, Marie-Claire Erkel, Damien Léger, Claire Thomas, Danielle Gomez-Merino, Mounir Chennaoui, Mégane Erblang, Fabien Sauvet, Catherine Drogou, Michaël Quiquempoix, Pascal Van Beers, Mathias Guillard, Arnaud Rabat, Aurélie Trignol, Cyprien Bourrilhon, Marie-Claire Erkel, Damien Léger, Claire Thomas, Danielle Gomez-Merino, Mounir Chennaoui

Abstract

This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).

Keywords: PVT; adenosine; caffeine; catecholamine; gene clock; genetics; pro-inflammatory cytokine; total sleep deprivation.

Conflict of interest statement

The authors declare no competing financial interests with this study.

Figures

Figure 1
Figure 1
Experimental design. D0 is the habituation day, D1 is the baseline day, D2 is the day of prolonged wakefulness (i.e., sleep deprivation, between 00:00–20:30) and D3 is the recovery sleep and end of the study. Night sleep are the black bars, awaking periods black line, cognitive tests are the striped bars, and caffeine or placebo intake are the black arrows. Visual Analogic Scales (VAS), Karolinska Sleepiness Scale (KSS), and Psychomotor Vigilance Task (PVT) have been assessed at D1: 09:15, 15:15, 21:15 and D2: 03:15, 09:15, 15:15). VAS, KSS, PVT; Placebo or caffeine (2.5 mg/kg) treatment (at D1 and D2: 08:30, 14:30).
Figure 2
Figure 2
Mean PVT performance over 38-h of prolonged wakefulness for a number of lapses (A), speed (B), KSS score (C), and the EEG theta-to-alpha ratio (D) during PVT in the centrotemporal brain region at 09:15 on D1 (baseline) and D2 (sleep deprivation) days as a function of placebo (PBO) or caffeine (CAF) condition. Values are mean ± SEM. * difference between baseline and continuous wakefulness, # between PBO and CAF conditions.
Figure 3
Figure 3
PVT number of lapses across consecutive 6-h intervals of awakening according to polymorphisms of TNF-α (A), ADORA2A (B), PER3 (C), and COMT (D) in placebo (PBO) and caffeine (CAF) conditions. Caffeine was consumed 45-min before PVT after 2-h, 8-h, 26-h, and 32-h of prolonged wakefulness. * is a SNP difference (p < 0.05), # is a treatment difference (p < 0.05) for one genotype.
Figure 4
Figure 4
EEG theta and alpha normalized power on D2 day (sleep deprivation) relative to D1 day (baseline) (z-score) on brain scalps during PVT at 09:15 according to polymorphisms of TNF-α (A), ADORA2A (B) and PER3 (C), and COMT (D) in placebo (PBO) and caffeine (CAF) conditions. Caffeine was consumed 45-min before PVT at D1 and D2.
Figure 5
Figure 5
Correlation analysis at 26-h of prolonged wakefulness (D2 day at 09:15) between EEG theta power in the centrotemporal brain region and the number of lapses during the PVT for all genetic polymorphisms in placebo (blue circle, grey line) and caffeine (red circle, black line) conditions.

References

    1. Connor J., Norton R., Ameratunga S., Robinson E., Wigmore B., Jackson R. Prevalence of driver sleepiness in a random population-based sample of car driving. Sleep. 2001;24:688–694. doi: 10.1093/sleep/24.6.688.
    1. Goel N., Rao H., Durmer J.S., Dinges D.F. Neurocognitive Consequences of Sleep Deprivation. Semin. Neurol. 2009;29:320–339. doi: 10.1055/s-0029-1237117.
    1. Arnal P.J., Sauvet F., Leger D., van Beers P., Bayon V., Bougard C., Rabat A., Millet G.Y., Chennaoui M. Benefits of Sleep Extension on Sustained Attention and Sleep Pressure Before and During Total Sleep Deprivation and Recovery. Sleep. 2015;38:1935–1943. doi: 10.5665/sleep.5244.
    1. Basner M., Dinges D.F. Maximizing Sensitivity of the Psychomotor Vigilance Test (PVT) to Sleep Loss. Sleep. 2011;34:581–591. doi: 10.1093/sleep/34.5.581.
    1. Van Dongen H.P., Maislin G., Mullington J.M., Dinges D.F. The Cumulative Cost of Additional Wakefulness: Dose-Response Effects on Neurobehavioral Functions and Sleep Physiology From Chronic Sleep Restriction and Total Sleep Deprivation. Sleep. 2003;26:117–126. doi: 10.1093/sleep/26.2.117.
    1. Lieberman H.R., Tharion W.J., Shukitt-Hale B., Speckman K.L., Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacoly. 2002;164:250–261. doi: 10.1007/s00213-002-1217-9.
    1. Urry E., Landolt H.P. Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics. In: Meerlo P., Benca R.M., Abel T., editors. Sleep, Neuronal Plasticity and Brain Function. Volume 25. Springer; Berlin/Heidelberg, Germany: 2014. pp. 331–366.
    1. Killgore W.D.S., Rupp T.L., Grugle N.L., Reichardt R.M., Lipizzi E.L., Balkin T.J. Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J. Sleep Res. 2008;17:309–321. doi: 10.1111/j.1365-2869.2008.00654.x.
    1. Lanini J., Galduróz J.C.F., Pompéia S. Acute personalized habitual caffeine doses improve attention and have selective effects when considering the fractionation of executive functions. Hum. Psychopharmacol. Clin. Exp. 2016;31:29–43. doi: 10.1002/hup.2511.
    1. Hansen D.A., Ramakrishnan S., Satterfield B.C., Wesensten N.J., Layton M.E., Reifman J., Van Dongen H.P.A. Randomized, double-blind, placebo-controlled, crossover study of the effects of repeated-dose caffeine on neurobehavioral performance during 48 h of total sleep deprivation. Psychopharmacoly. 2019;236:1313–1322. doi: 10.1007/s00213-018-5140-0.
    1. Dager S.R., Layton M.E., Strauss W., Richards T.L., Heide A., Friedman S.D., Artru A.A., Hayes C.E., Posse S. Human brain metabolic response to caffeine and the effects of tolerance. Am. J. Psychiatry. 1999;156:229–237.
    1. Tkachenko O., Dinges D.F. Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review. Neurosci. Biobehav. Rev. 2018;89:29–48. doi: 10.1016/j.neubiorev.2018.03.017.
    1. Satterfield B.C., Hinson J.M., Whitney P., Schmidt M.A., Wisor J.P., Van Dongen H.P. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation. Cortex. 2018;99:179–186. doi: 10.1016/j.cortex.2017.11.012.
    1. Maire M., Reichert C., Gabel V., Viola A., Strobel W., Krebs J., Landolt H., Bachmann V., Cajochen C., Schmidt C. Sleep ability mediates individual differences in the vulnerability to sleep loss: Evidence from a PER3 polymorphism. Cortex. 2014;52:47–59. doi: 10.1016/j.cortex.2013.11.008.
    1. Lo J.C., Groeger J.A., Santhi N., Arbon E.L., Lazar A.S., Hasan S., Von Schantz M., Archer S.N., Dijk D.-J. Effects of Partial and Acute Total Sleep Deprivation on Performance across Cognitive Domains, Individuals and Circadian Phase. PLoS ONE. 2012;7:e45987. doi: 10.1371/journal.pone.0045987.
    1. Satterfield B.C., Wisor J.P., Field S.A., Schmidt M.A., Van Dongen H.P. TNFα G308A polymorphism is associated with resilience to sleep deprivation-induced psychomotor vigilance performance impairment in healthy young adults. Brain Behav. Immun. 2015;47:66–74. doi: 10.1016/j.bbi.2014.12.009.
    1. Satterfield B.C., Wisor J.P., Schmidt M., Van Dongen H.P.A. Time-on-Task Effect During Sleep Deprivation in Healthy Young Adults Is Modulated by Dopamine Transporter Genotype. Sleep. 2017;40:zsx167. doi: 10.1093/sleep/zsx167.
    1. Valomon A., Holst S.C., Bachmann V., Viola A.U., Schmidt C., Zürcher J., Berger W., Cajochen C., Landolt H.-P. Genetic polymorphisms of DAT1 and COMT differentially associate with actigraphy-derived sleep–wake cycles in young adults. Chronobiol. Int. 2014;31:705–714. doi: 10.3109/07420528.2014.896376.
    1. Erblang M., Drogou C., Gomez-Merino D., Metlaine A., Boland A., Deleuze J.F., Thomas C., Sauvet F., Chennaoui M. The Impact of Genetic Variations in ADORA2A in the Association between Caffeine Consumption and Sleep. Genes. 2019;10:1021. doi: 10.3390/genes10121021.
    1. Rétey J.V., Adam M., Khatami R.O., Luhmann U.F., Jung H.H., Berger W., Landolt H.-P. A Genetic Variation in the Adenosine A2A Receptor Gene (ADORA2A) Contributes to Individual Sensitivity to Caffeine Effects on Sleep. Clin. Pharmacol. Ther. 2007;81:692–698. doi: 10.1038/sj.clpt.6100102.
    1. Childs E., Hohoff C., Deckert J., Xu K., Badner J., De Wit H. Association between ADORA2A and DRD2 Polymorphisms and Caffeine-Induced Anxiety. Neuropsychopharmacoly. 2008;33:2791–2800. doi: 10.1038/npp.2008.17.
    1. Rogers P.J., Hohoff C., Heatherley S.V., Mullings E.L., Maxfield P.J., Evershed R.P., Deckert J., Nutt D.J. Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption. Neuropsychopharmacoly. 2010;35:1973–1983. doi: 10.1038/npp.2010.71.
    1. Bodenmann S., Hohoff C., Freitag C., Deckert J., Rétey J.V., Bachmann V., Landolt H.-P. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br. J. Pharmacol. 2012;165:1904–1913. doi: 10.1111/j.1476-5381.2011.01689.x.
    1. Skeiky L., Brager A.J., Satterfield B.C., Petrovick M., Balkin T.J., Capaldi V.F., Ratcliffe R.H., A. Van Dongen H.P., Hansen D.A. TNFα G308A genotype, resilience to sleep deprivation, and the effect of caffeine on psychomotor vigilance performance in a randomized, double-blind, placebo-controlled, crossover study. Chrono-Int. 2020;37:1461–1464. doi: 10.1080/07420528.2020.1821044.
    1. Cajochen C., Wyatt J., Czeisler C., Dijk D. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience. 2002;114:1047–1060. doi: 10.1016/S0306-4522(02)00209-9.
    1. Zigmond A., Philip Snaith R. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Johns M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep. 1991;14:540–545. doi: 10.1093/sleep/14.6.540.
    1. Buysse D.J., Reynolds C.F., Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Horne J.A., Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976;4:97–110.
    1. McLellan T.M., Caldwell J.A., Lieberman H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016;71:294–312. doi: 10.1016/j.neubiorev.2016.09.001.
    1. Khitrov M.Y., Laxminarayan S., Thorsley D., Ramakrishnan S., Rajaraman S., Wesensten N.J., Reifman J. PC-PVT: A platform for psychomotor vigilance task testing, analysis, and prediction. Behav. Res. Methods. 2014;46:140–147. doi: 10.3758/s13428-013-0339-9.
    1. Åkerstedt T., Anund A., Axelsson J., Kecklund G. Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function. J. Sleep Res. 2014;23:242–254. doi: 10.1111/jsr.12158.
    1. Oostenveld R., Fries P., Maris E., Schoffelen J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2010;2011:1–9. doi: 10.1155/2011/156869.
    1. Drogou C., Sauvet F., Erblang M., Detemmerman L., Derbois C., Erkel M.C., Boland A., Deleuze J.F., Gomez-Merino D., Chennaoui M. Genotyping on blood and buccal cells using loop-mediated isothermal amplification in healthy humans. Biotechnol. Rep. 2020;26:e00468. doi: 10.1016/j.btre.2020.e00468.
    1. Thatcher R.W., Biver C.J., North D.M. Z Score EEG Biofeedback: Technical Foundations. Applied Neuroscience, Inc.; USA: 2004–2007. [(accessed on 9 April 2021)]. Available online: .
    1. Landolt H.-P., Rétey J.V., Tönz K., Gottselig J.M., Khatami R., Buckelmüller I., Peter Achermann P. Caffeine Attenuates Waking and Sleep Electroencephalographic Markers of Sleep Homeostasis in Humans. Neuropsychopharmacoly. 2004;29:1933–1939. doi: 10.1038/sj.npp.1300526.
    1. Rétey J.V., Adam M., Gottselig J.M., Khatami R., Dürr R., Achermann P., Landolt H.-P. Adenosinergic Mechanisms Contribute to Individual Differences in Sleep Deprivation-Induced Changes in Neurobehavioral Function and Brain Rhythmic Activity. J. Neurosci. 2006;26:10472–10479. doi: 10.1523/JNEUROSCI.1538-06.2006.
    1. Gorgoni M., Ferlazzo F., Ferrara M., Moroni F., D’Atri A., Fanelli S., Torriglia I.G., Lauri G., Marzano C., Rossini P.M., et al. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med. 2014;15:1132–1139. doi: 10.1016/j.sleep.2014.04.022.
    1. Holst S.C., Bersagliere A., Bachmann V., Berger W., Achermann P., Landolt H.-P. Dopaminergic Role in Regulating Neurophysiological Markers of Sleep Homeostasis in Humans. J. Neurosci. 2014;34:566–573. doi: 10.1523/JNEUROSCI.4128-13.2014.
    1. Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W. Effects of a polymorphism in the human tumor necrosis factor promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA. 1997;94:3195–3199. doi: 10.1073/pnas.94.7.3195.
    1. Louis E., Franchimont D., Piron A., Gevaert Y., Schaaf-Lafontaine N., Roland S., Mahieu P., Malaise M., De Groote D., Belaiche J. Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin. Exp. Immunol. 1998;113:401–406. doi: 10.1046/j.1365-2249.1998.00662.x.
    1. Jewett K.A., Krueger J.M. Humoral Sleep Regulation; Interleukin-1 and Tumor Necrosis Factor. Vitam. Horm. 2012;89:241–257. doi: 10.1016/b978-0-12-394623-2.00013-5.
    1. Chennaoui M., Sauvet F., Drogou C., Van Beers P., Langrume C., Guillard M., Gourby B., Bourrilhon C., Florence G., Gomez-Merino D. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-α) levels in healthy men. Cytokine. 2011;56:318–324. doi: 10.1016/j.cyto.2011.06.002.
    1. Rogers P.J., Heatherley S.V., Mullings E.L., Smith J.E. Faster but not smarter: Effects of caffeine and caffeine withdrawal on alertness and performance. Psychopharmacoly. 2013;226:229–240. doi: 10.1007/s00213-012-2889-4.
    1. Auton A., Salcedo T. The 1000 Genomes Project. In: Metzler J.B., editor. Assessing Rare Variation in Complex Traits. Springer; New York, NY, USA: 2015. pp. 71–85.
    1. Horrigan L.A., Kelly J.P., Connor T.J. Caffeine suppresses TNF-α production via activation of the cyclic AMP/protein kinase A pathway. Int. Immunopharmacol. 2004;4:1409–1417. doi: 10.1016/j.intimp.2004.06.005.
    1. Hunt R.C., Simhadri V.L., Iandoli M., Sauna Z.E., Kimchi-Sarfaty C. Exposing synonymous mutations. Trends Genet. 2014;30:308–321. doi: 10.1016/j.tig.2014.04.006.
    1. Chennaoui M., Arnal P.J., Drogou C., Leger D., Sauvet F., Gomez-Merino D. Leukocyte Expression of Type 1 and Type 2 Purinergic Receptors and Pro-Inflammatory Cytokines during Total Sleep Deprivation and/or Sleep Extension in Healthy Subjects. Front. Neurosci. 2017;11:240. doi: 10.3389/fnins.2017.00240.
    1. Carswell A.T., Howland K., Martinez-Gonzalez B., Baron P., Davison G. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020;120:1495–1508. doi: 10.1007/s00421-020-04384-8.
    1. Archer S.N., Schmidt C., Vandewalle G., Dijk D.-J. Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. Sleep Med. Rev. 2018;40:109–126. doi: 10.1016/j.smrv.2017.10.008.
    1. Liberman A.R., Halitjaha L., Ay A., Ingram K.K. Modeling Strengthens Molecular Link between Circadian Polymorphisms and Major Mood Disorders. J. Biol. Rhythm. 2018;33:318–336. doi: 10.1177/0748730418764540.
    1. Viola A.U., Archer S.N., James L.M., Groeger J.A., Lo J.C., Skene D.J., von Schantz M., Dijk D.-J. PER3 Polymorphism Predicts Sleep Structure and Waking Performance. Curr. Biol. 2007;17:613–618. doi: 10.1016/j.cub.2007.01.073.
    1. Vandewalle G., Archer S.N., Wuillaume C., Balteau E., Degueldre C., Luxen A., Maquet P., Dijk D.-J. Functional Magnetic Resonance Imaging-Assessed Brain Responses during an Executive Task Depend on Interaction of Sleep Homeostasis, Circadian Phase, and PER3 Genotype. J. Neurosci. 2009;29:7948–7956. doi: 10.1523/JNEUROSCI.0229-09.2009.
    1. Ebisawa T., Uchiyama M., Kajimura N., Mishima K., Kamei Y., Katoh M., Watanabe T., Sekimoto M., Shibui K., Kim K., et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2:342–346. doi: 10.1093/embo-reports/kve070.
    1. Turco M., Biscontin A., Corrias M., Caccin L., Bano M., Chiaromanni F., Salamanca M., Mattei D., Salvoro C., Mazzotta G., et al. Diurnal Preference, Mood and the Response to Morning Light in Relation to Polymorphisms in the Human Clock Gene PER3. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-06769-w.
    1. Gamble K.L., Motsinger-Reif A.A., Hida A., Borsetti H.M., Servick S.V., Ciarleglio C.M., Robbins S., Hicks J., Carver K., Hamilton N., et al. Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation. PLoS ONE. 2011;6:e18395. doi: 10.1371/journal.pone.0018395.
    1. Bodenmann S., Rusterholz T., Dürr R., Stoll C., Bachmann V., Geissler E., Jaggi-Schwarz K., Landolt H.-P. The Functional Val158Met Polymorphism of COMT Predicts Interindividual Differences in Brain Oscillations in Young Men. J. Neurosci. 2009;29:10855–10862. doi: 10.1523/JNEUROSCI.1427-09.2009.
    1. Tunbridge E.M., Narajos M., Harrison C.H., Beresford C., Cipriani A., Harrison P.J. Which Dopamine Polymorphisms Are Functional? Systematic Review and Meta-analysis of COMT, DAT, DBH, DDC, DRD1–5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol. Psychiatry. 2019;86:608–620. doi: 10.1016/j.biopsych.2019.05.014.
    1. Gabryelska A., Feige B., Riemann D., Spiegelhalder K., Johann A., Białasiewicz P., Hertenstein E. Can spectral power predict subjective sleep quality in healthy individuals? J. Sleep Res. 2019;28:e12848. doi: 10.1111/jsr.12848.
    1. Hertenstein E., Gabryelska A., Spiegelhalder K., Nissen C., Johann A.F., Umarova R., Riemann D., Baglioni C., Feige B. Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. J. Clin. Sleep Med. 2018;14:523–532. doi: 10.5664/jcsm.7036.
    1. Santhi N., Lazar A.S., McCabe P.J., Lo J.C., Groeger J.A., Dijk D.-J. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc. Natl. Acad. Sci. USA. 2016;113:E2730–E2739. doi: 10.1073/pnas.1521637113.
    1. Adam M., Rétey J.V., Khatami R., Landolt H.-P. Age-Related Changes in the Time Course of Vigilant Attention During 40 Hours Without Sleep in Men. Sleep. 2006;29:55–57. doi: 10.1093/sleep/29.1.55.

Source: PubMed

3
Abonnere