Optimizing microbiome sequencing for small intestinal aspirates: validation of novel techniques through the REIMAGINE study

Gabriela Guimaraes Sousa Leite, Walter Morales, Stacy Weitsman, Shreya Celly, Gonzalo Parodi, Ruchi Mathur, Rashin Sedighi, Gillian M Barlow, Ali Rezaie, Mark Pimentel, Gabriela Guimaraes Sousa Leite, Walter Morales, Stacy Weitsman, Shreya Celly, Gonzalo Parodi, Ruchi Mathur, Rashin Sedighi, Gillian M Barlow, Ali Rezaie, Mark Pimentel

Abstract

Background: The human small intestine plays a central role in the processes of digestion and nutrient absorption. However, characterizations of the human gut microbiome have largely relied on stool samples, and the associated methodologies are ill-suited for the viscosity and low microbial biomass of small intestine samples. As part of the REIMAGINE study to examine the specific roles of the small bowel microbiome in human health and disease, this study aimed to develop and validate methodologies to optimize microbial analysis of the small intestine.

Results: Subjects undergoing esophagogastroduodenoscopy without colon preparation for standard of care were prospectively recruited, and ~ 2 ml samples of luminal fluid were obtained from the duodenum using a custom sterile aspiration catheter. Samples of duodenal aspirates were either untreated (DA-U, N = 127) or pretreated with dithiothreitol (DA-DTT, N = 101), then cultured on MacConkey agar for quantitation of aerobic gram-negative bacteria, typically from the class Gammaproteobacteria, and on blood agar for quantitation of anaerobic microorganisms. DA-DTT exhibited 2.86-fold greater anaerobic bacterial counts compared to DA-U (P = 0.0101), but were not statistically different on MacConkey agar. DNA isolation from DA-U (N = 112) and DA-DTT (N = 43) samples and library preparation for 16S rRNA gene sequencing were also performed using modified protocols. DA-DTT samples exhibited 3.81-fold higher DNA concentrations (P = 0.0014) and 4.18-fold higher 16S library concentrations (P < 0.0001) then DA-U samples. 16S rRNA gene sequencing revealed increases in the detected relative abundances of obligate and facultative anaerobes in DA-DTT samples, including increases in the genera Clostridium (false discovery rate (FDR) P = 4.38E-6), Enterococcus (FDR P = 2.57E-8), Fusobacterium (FDR P = 0.02) and Bacteroides (FDR P = 5.43E-9). Detected levels of Gram-negative enteropathogens from the phylum Proteobacteria, such as Klebsiella (FDR P = 2.73E-6) and Providencia (FDR P < 0.0001) (family Enterobacteriaceae) and Pseudomonas (family Pseudomonadaceae) (FDR P = 0.04), were also increased in DA-DTT samples.

Conclusions: This study validates novel DTT-based methodology which optimizes microbial culture and 16S rRNA gene sequencing for the study of the small bowel microbiome. The microbial analyses indicate increased isolation of facultative and obligate anaerobes from the mucus layer using these novel techniques.

Keywords: 16S rRNA gene sequencing; Methodology optimization; Microbial culture; Microbiome; Mucus layer; Small intestine.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Workflow for pretreatment and microbial culture, including the number of subjects in each group
Fig. 2
Fig. 2
Workflow for DNA extraction and 16S rRNA gene sequencing of duodenal aspirate (DA) samples, including the number of subjects in each group
Fig. 3
Fig. 3
Final quantification of 16S libraries from DA-U (N = 112) and DA-DTT (N = 43) samples after 35 PCR cycles. The Mann-Whitney test was used to compare the median value of groups
Fig. 4
Fig. 4
Sunburst representation of the overall distribution of the small intestinal microbiome as determined by 16S rRNA sequencing. On the left: Relative microbial abundance detected in DA-U (no pretreatment, N = 112). On the right: Relative microbial abundance detected in DA-DTT (pretreatment with DTT, N = 43)
Fig. 5
Fig. 5
Alpha diversity rarefaction curves for DA-DTT (N = 112) and DA-U (N = 43) samples. Samples were rarefied to the least numbers of sequences obtained
Fig. 6
Fig. 6
Alpha diversity indices of DA samples pre-treated with DTT (DA-DTT, N = 112) and untreated DA (DA-U, N = 43). Left: Shannon entropy diversity for DA-DTT and DA-U samples. Right: Simpson’s index diversity for DA-DTT and DA-U samples
Fig. 7
Fig. 7
Beta diversity of DA-U and DA-DTT based on the weighted UniFrac metric. Principal Coordinates Analysis plot of binary and abundance-weighted Unifrac distances between DA-DTT (shown in orange, N = 43) and DA-U (shown in blue, N = 112)

References

    1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–810.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–1697.
    1. Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017;32:300–313.
    1. Minich JJ, Zhu Q, Janssen S, Hendrickson R, Amir A, Vetter R, et al. KatharoSeq Enables High-Throughput Microbiome Analysis from Low-Biomass Samples. mSystems. 2018;3.
    1. Oriano M, Terranova L, Teri A, Sottotetti S, Ruggiero L, Tafuro C, et al. Comparison of different conditions for DNA extraction in sputum - a pilot study. Multidiscip Respir Med. 2019;14:6.
    1. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
    1. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.
    1. Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8:24.
    1. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, et al. Phylogeny of gammaproteobacteria. J Bacteriol. 2010;192:2305–2314.
    1. Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol. 2012;2:114.
    1. Cox KD, Black MJ, Filip N, Miller MR, Mohns K, Mortimor J, et al. Community assessment techniques and the implications for rarefaction and extrapolation with hill numbers. Ecol Evol. 2017;7:11213–11226.
    1. Leser TD, Molbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009;11:2194–2206.
    1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and Bacteria cells in the body. PLoS Biol. 2016;14:e1002533.
    1. Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:352–361.
    1. Ermund A, Schutte A, Johansson ME, Gustafsson JK, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am J Physiol Gastrointest Liver Physiol. 2013;305:G341–G347.
    1. Terranova L, Oriano M, Teri A, Ruggiero L, Tafuro C, Marchisio P, et al. How to process sputum samples and extract bacterial DNA for microbiota analysis. Int J Mol Sci. 2018;19.
    1. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun Metagenomics. Front Microbiol. 2016;7:459.
    1. Wang Z, Zolnik CP, Qiu Y, Usyk M, Wang T, Strickler HD, et al. Comparison of fecal collection methods for microbiome and metabolomics studies. Front Cell Infect Microbiol. 2018;8:301.
    1. Jones MB, Highlander SK, Anderson EL, Li W, Dayrit M, Klitgord N, et al. Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A. 2015;112:14024–14029.
    1. Dubin K, Pamer EG. Enterococci and their interactions with the intestinal microbiome. Microbiol Spectr. 2014;5.
    1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–1651.
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638.
    1. Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996–1047.
    1. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014;147:1055–1063.
    1. Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. 2015;6:8292.
    1. van der Stel AX, van de Lest CHA, Huynh S, Parker CT, van Putten JPM, Wosten M. Catabolite repression in campylobacter jejuni correlates with intracellular succinate levels. Environ Microbiol. 2018;20:1374–1388.
    1. O'Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000;13:534–546.
    1. Kurmasheva N, Vorobiev V, Sharipova M, Efremova T, Mardanova A. The potential virulence factors of Providencia stuartii: motility, adherence, and invasion. Biomed Res Int. 2018;2018:3589135.
    1. Elhadad D, Desai P, Rahav G, McClelland M, Gal-Mor O. Flagellin is required for host cell invasion and Normal Salmonella Pathogenicity Island 1 expression by Salmonella enterica Serovar Paratyphi a. Infect Immun. 2015;83:3355–3368.
    1. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610.
    1. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
    1. Quail MA, Swerdlow H, Turner DJ. Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet. 2009; Chapter 18: Unit 18 12.

Source: PubMed

3
Abonnere