Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

Laura Mercatali, Federico La Manna, Arwin Groenewoud, Roberto Casadei, Federica Recine, Giacomo Miserocchi, Federica Pieri, Chiara Liverani, Alberto Bongiovanni, Chiara Spadazzi, Alessandro de Vita, Gabri van der Pluijm, Andrea Giorgini, Roberto Biagini, Dino Amadori, Toni Ibrahim, Ewa Snaar-Jagalska, Laura Mercatali, Federico La Manna, Arwin Groenewoud, Roberto Casadei, Federica Recine, Giacomo Miserocchi, Federica Pieri, Chiara Liverani, Alberto Bongiovanni, Chiara Spadazzi, Alessandro de Vita, Gabri van der Pluijm, Andrea Giorgini, Roberto Biagini, Dino Amadori, Toni Ibrahim, Ewa Snaar-Jagalska

Abstract

Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient's medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.

Keywords: bone metastasis; breast cancer; patient-derived xenograft; zebrafish model.

Figures

Figure 1
Figure 1
Breast cancer bone metastasis. (A): (a) Histological hematoxylin and eosin (H & E) staining of bone metastasis (BM) primary culture (5× magnification). Mucinous areas show low cellularity; (b) H & E staining of BM primary culture (20× magnification). Monomorphic cells with round nucleus and nucleolus are seen in nests with a minor mucus quantity; (c) ER staining showing positivity; (B): Cytospin of BM primary cells. White arrows show pancytokeratin-positive cells.
Figure 2
Figure 2
Representative image of MDA-MB-231 cell line five days after injection into the duct of Couvier of 2 day post fertilization (dpf), Tg(fli1:GFP) ZF embryo. MDA-MB-231, labeled in red, were monitored on a daily basis for the duration of the experiment (five days) and showed progressive and extensive dissemination throughout the developing embryo (25× magnification).
Figure 3
Figure 3
Images of carboxyfluorescein succinimidyl ester (CFSE)-labeled, patient-derived breast cancer bone metastasis (primary cells) xenografted in Tg(kdrl:mcherry) ZF embryos. (A) Whole-body image of the zebrafish embryo at 5 dpi (25× magnification). Primary cells disseminated predominantly in the caudal hematopoietic tissues (CHT) of the embryo; (B) Details of (A), showing the interactions of primary cells with the zebrafish vessels in the CHT. Cells extravasated in the CHT of the ZF embryo and engrafted in close proximity of the vessels. Fluorescent images merged with brightfield image, 63× magnification; (C) Combined picture of the CHT of embryo in (A,B). Individual images were taken at 63× magnification.
Figure 4
Figure 4
Gene expression analysis of aggressiveness and osteomimicry markers. (A) Heatmap configuration of gene expression analysis in BM primary culture and breast cancer cell lines; green/red bars refer to high/low gene expression, respectively; black bars refer to intermediate levels of expression; (B) Gene expression quantification by comparative threshold cycle (Ct) value method (∆∆Ct). The primary culture was chosen as calibrator. See the Experimental Section for selected genes.

References

    1. Weidle U.H., Birzele F., Kollmorgen G., Rüger R. Molecular mechanisms of bone metastasis. Cancer Genom. Proteom. 2016;13:1–12.
    1. Guan X. Cancer metastasis: Challenges and opportunitis. Acta Pharm. Sin. B. 2015;5:402–418. doi: 10.1016/j.apsb.2015.07.005.
    1. Roodman G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 2004;350:1655–1664. doi: 10.1056/NEJMra030831.
    1. Coleman R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001;27:165–176. doi: 10.1053/ctrv.2000.0210.
    1. Mundy G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer. 2002;2:584–593. doi: 10.1038/nrc867.
    1. Ibrahim T., Mercatali L., Amadori D. A new emergency in oncology: Bone metastases in breast cancer patients. Oncol. Lett. 2013;6:306–310. doi: 10.3892/ol.2013.1372.
    1. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0.
    1. Weilbaecher K.N., Guise T.A., McCauley L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer. 2011;11:411–425. doi: 10.1038/nrc3055.
    1. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature. 2005;438:820–827. doi: 10.1038/nature04186.
    1. Ren G., Esposito M., Kang Y. Bone metastasis and the metastatic niche. J. Mol. Med. 2015;93:1203–1212. doi: 10.1007/s00109-015-1329-4.
    1. Snaar-Jagalska B.E. ZF-CANCER: Developing high-throughput bioassays for human cancers in zebrafish. Zebrafish. 2009;6:441–443. doi: 10.1089/zeb.2009.0614.
    1. Tulotta C., Stefanescu C., Beletkaia E., Bussmann J., Tarbashevich K., Schmidt T., Snaar-Jagalska B.E. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis. Model. Mech. 2016;9:141–153. doi: 10.1242/dmm.023275.
    1. Barriuso J., Nagaraju R., Hurlstone A. Zebrafish: A new companion for translational research in oncology. Clin. Cancer Res. 2015;21:969–975. doi: 10.1158/1078-0432.CCR-14-2921.
    1. Holen I., Walker M., Nutter F., Fowles A., Evans C.A., Eaton C.L., Ottewell P.D. Oestrogen receptor positive breast cancer metastasis to bone: Inhibition by targeting the bonemicroenvironment in vivo. Clin. Exp. Metastasis. 2016;33:211–224. doi: 10.1007/s10585-015-9770-x.
    1. Wang N., Reeves K.J., Brown H.K., Fowles A.C., Docherty F.E., Ottewell P.D., Croucher P.I., Holen I., Eaton C.L. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J. Exp. Clin. Cancer Res. 2015;20:34–124. doi: 10.1186/s13046-015-0240-8.
    1. Ell B., Mercatali L., Ibrahim T., Campbell N., Schwarzenbach H., Pantel K., Amadori D., Kang Y. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bonemetastasis. Cancer Cell. 2013;24:542–556. doi: 10.1016/j.ccr.2013.09.008.
    1. Lu X., Kang Y. Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc. Natl. Acad. Sci. USA. 2009;106:9385–9390. doi: 10.1073/pnas.0900108106.
    1. Weiss F.U., Marques I.J., Woltering J.M., Vlecken D.H., Aghdassi A., Partecke L.I., Heidecke C.D., Lerch M.M., Bagowski C.P. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 2009;137:2136–2145. doi: 10.1053/j.gastro.2009.08.065.
    1. Marques I.J., Weiss F.U., Vlecken D.H., Nitsche C., Bakkers J., Lagendijk A.K., Partecke L.I., Heidecke C.D., Lerch M.M., Bagowski C.P. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:1375. doi: 10.1186/1471-2407-9-128.
    1. Razaq W. Bone targeted therapies for bone metastasis in breast cancer. J. Clin. Med. 2013;2:176–187. doi: 10.3390/jcm2040176.
    1. Taylor A.M., Zon L.I. Zebrafish tumor assays: The state of transplantation. Zebrafish. 2009;6:339–346. doi: 10.1089/zeb.2009.0607.
    1. Lee L.M., Seftor E.A., Bonde G., Cornell R.A., Hendrix M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 2005;233:1560–1570. doi: 10.1002/dvdy.20471.
    1. Stoletov K., Montel V., Lester R.D., Gonias S.L., Klemke R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl. Acad. Sci. USA. 2007;104:17406–17411. doi: 10.1073/pnas.0703446104.
    1. Haldi M., Ton C., Seng W.L., McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2.
    1. Tang Q., Moore J.C., Ignatius M.S., Tenen I.M., Hayes M.N., Garcia E.G., Torres Y.N., Bourque C., He S., Blackburn J.S., et al. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat. Commun. 2016;7:10358. doi: 10.1038/ncomms10358.
    1. Teng Y., Xie X., Walker S., White D.T., Mumm J.S., Cowell J.K. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:1375. doi: 10.1186/1471-2407-13-453.
    1. Murayama E., Kissa K., Zapata A., Mordelet E., Briolat V., Lin H.-F., Handin R.I., Herbomel P. Tracing hematopoietic precursor migration to successive hematopoietic organs during Zebrafish development. Immunity. 2006;25:963–975. doi: 10.1016/j.immuni.2006.10.015.
    1. Sacco A., Roccaro A.M., Ma D., Shi J., Mishima Y., Moschetta M., Chiarini M., Munshi N., Handin R.I., Ghobrial I.M. Cancer cell dissemination and homing to the bone marrow in a zebrafish model. Cancer Res. 2016;76:463–471. doi: 10.1158/0008-5472.CAN-15-1926.
    1. He S., Lamers G.E., Beenakker J.W., Cui C., Ghotra V.P., Danen E.H., Meijer A.H., Spaink H.P., Snaar-Jagalska B.E. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 2012;227:431–445. doi: 10.1002/path.4013.
    1. Esposito M., Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol. Ther. 2014;141:222–233. doi: 10.1016/j.pharmthera.2013.10.006.
    1. Jacob K., Webber M., Benayahu D., Kleinman H.K. Osteonectin promotes prostate cancer cell migration and invasion: A possible mechanism for metastasis to bone. Cancer Res. 1999;59:4453–4457.
    1. Li S., Zou D., Li C., Meng H., Sui W., Feng S., Cheng T., Zhai Q., Qiu L. Targeting stem cell niche can protect hematopoietic stem cells from chemotherapy and G-CSF treatment. Stem Cell Res. Ther. 2015;6:1–10. doi: 10.1186/s13287-015-0164-4.
    1. Evans A.G., Calvi L.M. Notch signaling in the malignant bone marrow microenvironment: Implications for a niche-based model of oncogenesis. Ann. N. Y. Acad. Sci. 2015;1335:63–77. doi: 10.1111/nyas.12562.
    1. Windrichova J., Fuchsova R., Kucera R., Topolcan O., Fiala O., Finek J., Slipkova D., Karlikova M., Svobodova J. Testing of a novel cancer metastatic multiplex panel for the detection of bone-metastatic disease—A pilot study. Anticancer Res. 2016;36:1973–1978.
    1. Sethi N., Kang Y. Notch signalling in cancer progression and bone metastasis. Br. J. Cancer. 2011;105:1805–1810. doi: 10.1038/bjc.2011.497.
    1. Chu G.C., Chung L.W. RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev. 2014;33:497–509. doi: 10.1007/s10555-013-9488-7.

Source: PubMed

3
Abonnere