A versatile, automated and high-throughput drug screening platform for zebrafish embryos

Alexandra Lubin, Jason Otterstrom, Yvette Hoade, Ivana Bjedov, Eleanor Stead, Matthew Whelan, Gaia Gestri, Yael Paran, Elspeth Payne, Alexandra Lubin, Jason Otterstrom, Yvette Hoade, Ivana Bjedov, Eleanor Stead, Matthew Whelan, Gaia Gestri, Yael Paran, Elspeth Payne

Abstract

Zebrafish provide a unique opportunity for drug screening in living animals, with the fast-developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed an easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft® Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and X-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high-content screening in zebrafish. This article has an associated First Person interview with the first author of the paper.

Keywords: Drug screening; High-throughput; Zebrafish.

Conflict of interest statement

Competing interests J.O. and Y.P. are employed by IDEA Bio-Medical, Rehovot, Israel, which manufactures and sells the WiScan® Hermes High Content Imaging System and WiSoft® Athena software Zebrafish Application used throughout this study. They have provided technical support throughout development of this screening platform and have contributed to the preparation of the manuscript. M.W. is employed by University College London with a fellowship partially funded by IDEA Bio-Medical. The remaining authors have no competing interests.

© 2021. Published by The Company of Biologists Ltd.

Figures

Fig. 1.
Fig. 1.
The screening workflow and automated image analysis to detect zebrafish embryos, and count haematopoetic stem cells in the tails. (A) Schematic of screening platform workflow including plate preparation, image acquisition and image analysis of zebrafish embryos with approximate timings. (B,C) Brightfield image (B) and fluorescent image (C) of a Tg(itga2b:GFP) zebrafish at 3 dpf acquired from the Hermes showing some of the regions identified by Athena: tail (red), trunk (dark blue), head (white), eye (pink), yolk (yellow), tail fin (light blue) and fluorescent granules (green). (D) Cartoon showing the location of haematopoietic stem and progenitor cells (HSPCs) in the caudal haematopoietic tissue (CHT) in the tail at 3 dpf. (E) Correlation of HSPC counts (between manual and granule) in 93 individual images of Tg(itga2b:GFP) embryos at 3 dpf using the Athena Zebrafish Application, analysed using simple linear regression with r=0.844. Scale bars: 500 µm. n refers to the number of embryos analysed.
Fig. 2.
Fig. 2.
Validation of HSPC counts using the Athena Zebrafish Application to detect differences in stem cell populations due to age or genetics of zebrafish embryos. (A) Brightfield and fluorescent images of Tg(itga2b:GFP) embryos at 2-4 dpf and analysed for HSPC count (green) in the tail region (red). (B) HSPC counts at 2 dpf (n=48), 3 dpf (n=54) and 4 dpf (n=47), showing the increase in HSPC number over time. (C) Fluorescent images of the tail of rps14+/+ and rps14+/− Tg(itga2b:GFP) at 3 dpf following phz haemolytic stress for 24 h at 24 hpf alongside unstressed controls analysed for HSPC count (green) in the tail region (red). (D) HSPC count of the different conditions, showing no difference in HSPC count between unstressed rps14+/− (n=27) and unstressed rps14+/+ (n=22) embryos, but an increase in HSPC count in the phz-stressed rps14+/+ embryos (n=29) compared with wild type, which does not occur in the phz-stressed rps14+/− embryos (n=29), from triplicate experiments (Peña et al., 2020 preprint). Statistical analysis using unpaired t-tests. Error bars show mean±s.d. ns, P>0.05; **P<0.01. Scale bars: 500 µm. n refers to the number of embryos analysed for each condition. Cell counts give the Athena cell count for the example image shown.
Fig. 3.
Fig. 3.
Automated analysis of the effects of X-ray irradiation on HSPC count and myeloid count in dual fluorophore images, as well as apoptosis in zebrafish embryos. (A) Fluorescent images of the tail of Tg(itga2b:GFP) embryos at 3 dpf, irradiated at 2 dpf with 0 Gy, 40 Gy or 100 Gy X-ray and analysed for HSPC count (green) in the tail region (red). (B) HSPC counts showing the reduction in HSPC number with 40 Gy (n=46) and 100 Gy (n=48) compared with 0 Gy (n=48). (C) Fluorescent images of the tail of Tg(itga2b:GFP)(lyzC:mcherry) dual fluorophore embryos at 3 dpf, irradiated at 2 dpf with 0 Gy or 40 Gy X-ray and analysed for HSPC (green) and myeloid (red) in the tail (white). (D,E) HSPC count of GFP-positive cells (D) and myeloid cell count of mCherry-positive cells (E) in the tail, showing the decrease in both cell types with irradiation (n=43) compared with unirradiated (n=42). (F) Fluorescent images of Acridine Orange-stained embryos at 3 dpf, irradiated at 2 dpf with 0 Gy or 40 Gy X-ray and analysed for granule count (green) in the whole fish. (G) Granule counts in the whole fish showing an increase in apoptosis following irradiation (n=40) compared with unirradiated (n=42). Irradiation experiments were performed in triplicate. Statistical analysis using unpaired t-tests. Error bars show mean±s.d. ***P<0.001, ****P<0.0001. Scale bars: 500 µm. n refers to the number of embryos analysed for each condition. Cell counts give the Athena cell count for the example image shown, for each cell type in dual fluorophore images.
Fig. 4.
Fig. 4.
Extended applications of the analysis platform including automated analysis of hair cell loss, angiogenesis and eye size in zebrafish embryos. (A) Fluorescent images of YO-PRO-1-stained embryos at 4 dpf, following treatment for 1 h with DMSO, 100 µM pentamidine isethionate (PI) or 100 µM propantheline bromide (PB), analysed for fluorescent granules (red) in the whole fish. (B,C) Total fluorescence intensity in the whole fish (B) and average area of the fluorescent granules (C), showing decrease with drug treatment as previously described (Chiu et al., 2008). (D) Fluorescent images of Tg(kdrl:mCherry) embryos at 2 dpf, treated for 24 h from 24 hpf with DMSO, AG1478 or SU 4312 and analysed for mCherry fluorescence in the whole fish. (E,F) Total fluorescent area in the whole fish following treatment with AG1478 (E) and total fluorescent area in the whole fish following treatment with SU4312 (F), showing reduced angiogenesis in treated fish compared with the control, as previously described (Tran et al., 2007). (G) Brightfield images of mab21l2+/+, mab21l2+/− and mab21l2−/− mutant embryos at 4 dpf analysed for eye size (pink). (H) Eye area, showing the reduced eye size in mab21l2−/− mutants. Results consistent with previous publications were achieved in a single experiment for each of these assays. Statistical analysis using unpaired t-tests. Error bars show mean±s.d. ns, P>0.05; *P<0.05, ***P<0.001, ****P<0.0001. Scale bars: 500 µm. n refers to the number of embryos analysed for each condition.

References

    1. Abrams, J. M., White, K., Fessler, L. I. and Steller, H. (1993). Programmed cell death during Drosophila embryogenesis. Development 117, 29. 10.1242/dev.117.1.29
    1. Aldridge, D. R. and Radford, I. R. (1998). Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res. 58, 2817.
    1. Arulmozhivarman, G., Stöter, M., Bickle, M., Kräter, M., Wobus, M., Ehninger, G., Stölzel, F., Brand, M., Bornhäuser, M. and Shayegi, N. (2016). In Vivo chemical screen in Zebrafish embryos identifies regulators of hematopoiesis using a semiautomated imaging assay. J. Biomol. Screen. 21, 956-964. 10.1177/1087057116644163
    1. Buchan, K. D., Prajsnar, T. K., Ogryzko, N. V., de Jong, N. W. M., van Gent, M., Kolata, J., Foster, S. J., van Strijp, J. A. G. and Renshaw, S. A. (2019). A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. PLOS ONE 14, e0215592. 10.1371/journal.pone.0215592
    1. Chang, T.-Y., Pardo-Martin, C., Allalou, A., Wählby, C. and Yanik, M. F. (2012). Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab. Chip 12, 711-716. 10.1039/C1LC20849G
    1. Chávez, M. N., Aedo, G., Fierro, F. A., Allende, M. L. and Egaña, J. T. (2016). Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Front. Physiol. 7, 56. 10.3389/fphys.2016.00056
    1. Chen, A. T. and Zon, L. I. (2009). Zebrafish blood stem cells. J. Cell. Biochem. 108, 35-42. 10.1002/jcb.22251
    1. Chen, C., Choudhury, S., Wangsa, D., Lescott, C. J., Wilkins, D. J., Sripadhan, P., Liu, X., Wangsa, D., Ried, T., Moskaluk, al. (2017). A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci. Rep. 7, 11410. 10.1038/s41598-017-11764-2
    1. Chiu, L. L., Cunningham, L. L., Raible, D. W., Rubel, E. W. and Ou, H. C. (2008). Using the zebrafish lateral line to screen for ototoxicity. J. Assoc. Res. Otolaryngol. 9, 178-190. 10.1007/s10162-008-0118-y
    1. Chiu, C.-C., Chou, H.-L., Chen, B.-H., Chang, K.-F., Tseng, C.-H., Fong, Y., Fu, T.-F., Chang, H.-W., Wu, C.-Y., Tsai, al. (2015). BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer 15, 962. 10.1186/s12885-015-1970-x
    1. Choi, J., Dong, L., Ahn, J., Dao, D., Hammerschmidt, M. and Chen, J.-N. (2007). FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev. Biol. 304, 735-744. 10.1016/j.ydbio.2007.01.023
    1. Chowdhury, S., Owens, K. N., Herr, R. J., Jiang, Q., Chen, X., Johnson, G., Groppi, V. E., Raible, D. W., Rubel, E. W. and Simon, J. A. (2018). Phenotypic optimization of urea–thiophene carboxamides to yield potent, well tolerated, and orally active protective agents against aminoglycoside-induced hearing loss. J. Med. Chem. 61, 84-97. 10.1021/acs.jmedchem.7b00932
    1. Deml, B., Kariminejad, A., Borujerdi, R. H. R., Muheisen, S., Reis, L. M. and Semina, E. V. (2015). Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. PLoS Genet. 11, e1005002. 10.1371/journal.pgen.1005002
    1. Esterberg, R., Coffin, A. B., Ou, H., Simon, J. A., Raible, D. W. and Rubel, E. W. (2013). Fish in a dish: drug discovery for hearing habilitation. Drug Discovery Today: Disease Models 10, e23-e29. 10.1016/j.ddmod.2012.02.001
    1. Fazio, M. and Zon, L. I. (2017). Fishing for answers in precision cancer medicine. Proc. Natl Acad. Sci. USA 114, 10306. 10.1073/pnas.1713769114
    1. Ferri-Lagneau, K. F., Moshal, K. S., Grimes, M., Zahora, B., Lv, L., Sang, S. and Leung, T. (2012). Ginger stimulates hematopoiesis via bmp pathway in Zebrafish. PLOS ONE 7, e39327. 10.1371/journal.pone.0039327
    1. Fior, R., Póvoa, V., Mendes, R. V., Carvalho, T., Gomes, A., Figueiredo, N. and Ferreira, M. G. (2017). Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234. 10.1073/pnas.1618389114
    1. Fu, A., Peh, Y. M., Ngan, W., Wei, N. and Luo, K. Q. (2018). Rapid identification of antimicrometastases drugs using integrated model systems with two dimensional monolayer, three dimensional spheroids, and zebrafish xenotransplantation tumors. Biotechnol. Bioeng. 115, 2828-2843. 10.1002/bit.26816
    1. Furutani-Seiki, M., Jiang, Y. J., Brand, M., Heisenberg, C. P., Houart, C., Beuchle, D., van Eeden, F. J., Granato, M., Haffter, P., Hammerschmidt, al. (1996). Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229. 10.1242/dev.123.1.229
    1. Gath, N. and Gross, J. M. (2019). Zebrafish mab21l2 mutants possess severe defects in optic cup morphogenesis, lens and cornea development. Dev. Dyn. 248, 514-529. 10.1002/dvdy.44
    1. Geiger, G. A., Parker, S. E., Beothy, A. P., Tucker, J. A., Mullins, M. C. and Kao, G. D. (2006). Zebrafish as a “Biosensor”? effects of ionizing radiation and amifostine on embryonic viability and development. Cancer Res. 66, 8172. 10.1158/0008-5472.CAN-06-0466
    1. Hagedorn, E. J., Durand, E. M., Fast, E. M. and Zon, L. I. (2014). Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp. Cell Res. 329, 220-226. 10.1016/j.yexcr.2014.07.030
    1. Haney, M. G., Moore, L. H. and Blackburn, J. S. (2020). Drug screening of primary patient derived tumor xenografts in zebrafish. J. Vis. Exp. 10.3791/60996
    1. Hartsock, A., Lee, C., Arnold, V. and Gross, J. M. (2014). In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: A role for the lens in maturation and maintenance of the hyaloid. Dev. Biol. 394, 327-339. 10.1016/j.ydbio.2014.07.024
    1. Jung, D.-W., Oh, E.-S., Park, S.-H., Chang, Y.-T., Kim, C.-H., Choi, S.-Y. and Williams, D. R. (2012). A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol. Biosyst. 8, 1930-1939. 10.1039/c2mb05501e
    1. Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L., Ljosa, V., Rueden, C., Eliceiri, K. W. and Carpenter, A. E. (2011). Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179-1180. 10.1093/bioinformatics/btr095
    1. Kanungo, J., Lantz, S. and Paule, M. G. (2011). In vivo imaging and quantitative analysis of changes in axon length using transgenic zebrafish embryos. Neurotoxicol. Teratol. 33, 618-623. 10.1016/j.ntt.2011.08.013
    1. Kimmel, C. B., Ballard William, W., Kimmel Seth, R., Ullmann, B. and Schilling Thomas, F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. 10.1002/aja.1002030302
    1. Kitcher, S. R., Kirkwood, N. K., Camci, E. D., Wu, P., Gibson, R. M., Redila, V. A., Ogelman, R., Simon, J. A., Rubel, E. W., Raible, D. al. (2019). ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight 4, e126764. 10.1172/jci.insight.126764
    1. Lehnert, S., Rybka, W. B., Suissa, S. and Giambattisto, D. (1985). Radiation response of haematopoietic cell lines of human origin. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49, 423-431. 10.1080/09553008514552651
    1. Lenard, A., Alghisi, E., Daff, H., Donzelli, M., McGinnis, C. and Lengerke, C. (2016). Using zebrafish to model erythroid lineage toxicity and regeneration. Haematologica 101, e164. 10.3324/haematol.2016.142562
    1. Lin, H.-F., Traver, D., Zhu, H., Dooley, K., Paw, B. H., Zon, L. I. and Handin, R. I. (2005). Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106, 3803. 10.1182/blood-2005-01-0179
    1. Lin, H. S., Huang, Y. L., Wang, Y. S., Hsiao, E., Hsu, T. A., Shiao, H. Y., Jiaang, W. T., Sampurna, B. P., Lin, K. H., Wu, M. al. (2019). Identification of novel anti-liver cancer small molecules with better therapeutic index than sorafenib via zebrafish drug screening platform. Cancers (Basel) 11, 739. 10.3390/cancers11060739
    1. Mauro, A., Ng, R., Li, J. Y., Guan, R., Wang, Y., Singh, K. K. and Wen, X.-Y. (2019). Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish. PLoS ONE 14, e0221796. 10.1371/journal.pone.0221796
    1. McAleer, M. F., Davidson, C., Davidson, W. R., Yentzer, B., Farber, S. A., Rodeck, U. and Dicker, A. P. (2005). Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers. Int. J. Radiat. Oncol. Biol. Phys. 61, 10-13. 10.1016/j.ijrobp.2004.09.046
    1. McGrath, P. and Seng, W. L. (2013). Use of zebrafish apoptosis assays for preclinical drug discovery. Expert Opin. Drug Discov. 8, 1191-1202. 10.1517/17460441.2013.825244
    1. Metelo, A. M., Noonan, H. R., Li, X., Jin, Y., Baker, R., Kamentsky, L., Zhang, Y., van Rooijen, E., Shin, J., Carpenter, A. al. (2015). Pharmacological HIF2α inhibition improves VHL disease–associated phenotypes in zebrafish model. J. Clin. Invest. 125, 1987-1997. 10.1172/JCI73665
    1. Nicolson, T. (2005). The genetics of hearing and balance in Zebrafish. Annu. Rev. Genet. 39, 9-22. 10.1146/annurev.genet.39.073003.105049
    1. North, T. E., Goessling, W., Walkley, C. R., Lengerke, C., Kopani, K. R., Lord, A. M., Weber, G. J., Bowman, T. V., Jang, I.-H., Grosser, al. (2007). Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007-1011. 10.1038/nature05883
    1. Owens, K. N., Santos, F., Roberts, B., Linbo, T., Coffin, A. B., Knisely, A. J., Simon, J. A., Rubel, E. W. and Raible, D. W. (2008). Identification of genetic and chemical modulators of Zebrafish mechanosensory hair cell death. PLoS Genet. 4, e1000020. 10.1371/journal.pgen.1000020
    1. Pardo-Martin, C., Chang, T.-Y., Koo, B. K., Gilleland, C. L., Wasserman, S. C. and Yanik, M. F. (2010). High-throughput in vivo vertebrate screening. Nat. Methods 7, 634-636. 10.1038/nmeth.1481
    1. Pardo-Martin, C., Allalou, A., Medina, J., Eimon, P. M., Wählby, C. and Fatih Yanik, M. (2013). High-throughput hyperdimensional vertebrate phenotyping. Nat. Commun. 4, 1467. 10.1038/ncomms2475
    1. Parng, C., Anderson, N., Ton, C. and McGrath, P. (2004). Zebrafish apoptosis assays for drug discovery. Methods Cell Biol. 76, 75-85. 10.1016/S0091-679X(04)76005-7
    1. Pei, W., Xu, L., Huang, S. C., Pettie, K., Idol, J., Rissone, A., Jimenez, E., Sinclair, J. W., Slevin, C., Varshney, G. al. (2018). Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. npj Regenerative Medicine 3, 11. 10.1038/s41536-018-0050-7
    1. Peña, O. A., Lubin, A., Rowell, J., Hockings, C., Jung, Y., Hoade, Y., Dace, P., Valdivia, L. E., Tuschl, K., Boiers, al. (2020). TLR7 ligation augments haematopoiesis in Rps14 (uS11) deficiency via paradoxical suppression of inflammatory signalling and enhanced differentiation. bioRxiv 2020.07.06.175000. 10.1101/2020.07.06.175000
    1. Pulak, R. (2016). Tools for automating the imaging of zebrafish larvae. Methods 96, 118-126. 10.1016/j.ymeth.2015.11.021
    1. Romano, S. N. and Gorelick, D. A. (2014). Semi-automated imaging of tissue-specific fluorescence in zebrafish embryos. J. Vis. Exp. 51533. 10.3791/51533
    1. Saydmohammed, M., Vollmer, L. L., Onuoha, E. O., Vogt, A. and Tsang, M. (2011). A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling. Birth Defects Res. C Embryo Today 93, 281-287. 10.1002/bdrc.20216
    1. Schneider, R. K., Schenone, M., Ferreira, M. V., Kramann, R., Joyce, C. E., Hartigan, C., Beier, F., Brümmendorf, T. H., Germing, U., Platzbecker, al. (2016). Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat. Med. 22, 288. 10.1038/nm.4047
    1. Serbedzija, G. N., Flynn, E. and Willett, C. E. (1999). Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3, 353-359. 10.1023/A:1026598300052
    1. Shafizadeh, E., Peterson, R. T. and Lin, S. (2004). Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 245-249. 10.1016/j.cca.2004.05.003
    1. Somasagara, R. R., Huang, X., Xu, C., Haider, J., Serody, J. S., Armistead, P. M. and Leung, T. (2021). Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci. Rep. 11, 5715. 10.1038/s41598-021-85141-5
    1. Stirling, D. R., Suleyman, O., Gil, E., Elks, P. M., Torraca, V., Noursadeghi, M. and Tomlinson, G. S. (2020). Analysis tools to quantify dissemination of pathology in zebrafish larvae. Sci. Rep. 10, 3149. 10.1038/s41598-020-59932-1
    1. Teleanu, R. I., Chircov, C., Grumezescu, A. M. and Teleanu, D. M. (2019). Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med. 9, 84. 10.3390/jcm9010084
    1. Ton, C. and Parng, C. (2005). The use of zebrafish for assessing ototoxic and otoprotective agents. Hear. Res. 208, 79-88. 10.1016/j.heares.2005.05.005
    1. Tonon, F., Zennaro, C., Dapas, B., Carraro, M., Mariotti, M. and Grassi, G. (2016). Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. Int. J. Pharm. 515, 583-591. 10.1016/j.ijpharm.2016.10.070
    1. Tran, T. C., Sneed, B., Haider, J., Blavo, D., White, A., Aiyejorun, T., Baranowski, T. C., Rubinstein, A. L., Doan, T. N., Dingledine, al. (2007). Automated, quantitative screening assay for antiangiogenic compounds using transgenic Zebrafish. Cancer Res. 67, 11386. 10.1158/0008-5472.CAN-07-3126
    1. Traver, D., Winzeler, A., Stern, H. M., Mayhall, E. A., Langenau, D. M., Kutok, J. L., Look, A. T. and Zon, L. I. (2004). Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104, 1298-1305. 10.1182/blood-2004-01-0100
    1. Tucker, B. and Lardelli, M. (2007). A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 4, 113-116. 10.1089/zeb.2007.0508
    1. Vlasits, A. L., Simon, J. A., Raible, D. W., Rubel, E. W. and Owens, K. N. (2012). Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear. Res. 294, 153-165. 10.1016/j.heares.2012.08.002
    1. Vogt, A., Cholewinski, A., Shen, X., Nelson, S. G., Lazo, J. S., Tsang, M. and Hukriede, N. A. (2009). Automated image-based phenotypic analysis in zebrafish embryos. Dev. Dyn. 238, 656-663. 10.1002/dvdy.21892
    1. Vogt, A., Codore, H., Day, B. W., Hukriede, N. A. and Tsang, M. (2010). Development of automated imaging and analysis for zebrafish chemical screens. J. Vis. Exp. e1900. 10.3791/1900
    1. Westerfield, M. (2007). The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th edn, Eugene: University of Oregon Press.
    1. Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. J. Neurobiol. 53, 157-171. 10.1002/neu.10123
    1. Wycliffe, R., Julie Plaisancie, J., Sydney Leaman, S., Santis, O., Tucker, L., Cavieres, D., Fernandez, M., Weiss, C., Sobarzo, C., Gestri, al. (2020). Developmental delay during eye morphogenesis underlies optic cup and neurogenic defects in mab21l2u517 zebrafish mutants. IJDB 65, 289-299. 10.1387/ijdb.200173LV
    1. Xiao, J., Glasgow, E. and Agarwal, S. (2020). Zebrafish xenografts for drug discovery and personalized medicine. Trends Cancer 6, 569-579. 10.1016/j.trecan.2020.03.012
    1. Zhang, B., Shimada, Y., Kuroyanagi, J., Umemoto, N., Nishimura, Y. and Tanaka, T. (2014). Quantitative phenotyping-Based In Vivo chemical screening in a Zebrafish model of leukemia stem cell Xenotransplantation. PLoS ONE 9, e85439. 10.1371/journal.pone.0085439
    1. Zirlik, K. and Duyster, J. (2018). Anti-angiogenics: current situation and future perspectives. Oncol. Res. Treat. 41, 166-171. 10.1159/000488087

Source: PubMed

3
Abonnere