Effect of Moringa oleifera Leaf Powder on Postprandial Blood Glucose Response: In Vivo Study on Saharawi People Living in Refugee Camps

Alessandro Leone, Simona Bertoli, Sara Di Lello, Angela Bassoli, Stefano Ravasenghi, Gigliola Borgonovo, Fabio Forlani, Alberto Battezzati, Alessandro Leone, Simona Bertoli, Sara Di Lello, Angela Bassoli, Stefano Ravasenghi, Gigliola Borgonovo, Fabio Forlani, Alberto Battezzati

Abstract

The hypoglycemic effect in humans of Moringa oleifera (MO) leaf powder has, to date, been poorly investigated. We assessed the chemical composition of MO leaf powder produced at Saharawi refugee camps, its in vitro ability to inhibit α-amylase activity, and its sensory acceptability in food. We then evaluated its effect on postprandial glucose response by randomly administering, on 2 different days, a traditional meal supplemented with 20 g of MO leaf powder (MOR20), or not (control meal, CNT), to 17 Saharawi diabetics and 10 healthy subjects. Capillary glycaemia was measured immediately before the meal and then at 30 min intervals for 3 h. In the diabetic subjects the postprandial glucose response peaked earlier with MOR20 compared to CNT and with lower increments at 90, 120, and 150 min. The mean glycemic meal response with MOR20 was lower than with CNT. The healthy subjects showed no differences. Thus, MO leaf powder could be a hypoglycemic herbal drug. However, given the poor taste acceptability of the 20 g MO meal, lower doses should be evaluated. Moreover, the hypoglycemic effects of MO leaf powder should also be demonstrated by trials evaluating its long-term effects on glycaemia.

Keywords: Moringa oleifera; diabetes; humans; nutritional composition; sensory acceptability.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representative inhibition profile of α-amylase activity in the presence of Moringa oleifera extract.
Figure 2
Figure 2
Flowchart of the study plan; MOR20: Meal supplemented with 20 g of Moringa oleifera leaf powder; CNT: Control meal.
Figure 3
Figure 3
Kinetics and changes from the baseline of capillary blood glucose after administration of a meal with added 20 g of MO leaf powder (MOR20) and a control meal (CNT) in healthy and diabetic subjects. Values are reported in the graphs are means and standard errors. * p < 0.05.

References

    1. Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J., Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015;16:12791–12835. doi: 10.3390/ijms160612791.
    1. Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J., Bertoli S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 2016;17:2141. doi: 10.3390/ijms17122141.
    1. Popoola J.O., Obembe O.O. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J. Ethnopharmacol. 2013;150:682–691. doi: 10.1016/j.jep.2013.09.043.
    1. Leone A., Fiorillo G., Criscuoli F., Ravasenghi S., Santagostini L., Fico G., Spadafranca A., Battezzati A., Schiraldi A., Pozzi F., et al. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci. 2015;16:18923–18937. doi: 10.3390/ijms160818923.
    1. Barichella M., Pezzoli G., Faierman S.A., Raspini B., Rimoldi M., Cassani E., Bertoli S., Battezzati A., Leone A., Iorio L., et al. Nutritional characterisation of Zambian Moringa oleifera: Acceptability and safety of short-term daily supplementation in a group of malnourished girls. Int. J. Food. Sci. Nutr. 2018:1–9. doi: 10.1080/09637486.2018.1475550.
    1. Tshingani K., Donnen P., Mukumbi H., Duez P., Dramaix-Wilmet M. Impact of Moringa oleifera lam. Leaf powder supplementation versus nutritional counseling on the body mass index and immune response of hiv patients on antiretroviral therapy: A single-blind randomized control trial. BMC Complement. Altern. Med. 2017;17:420. doi: 10.1186/s12906-017-1920-z.
    1. Fahey J.W. Moringa oleifera: A Review of the Medicinal Potential. International Society for Horticultural Science (ISHS); Leuven, Belgium: 2017. pp. 209–224.
    1. Ntila S., Ndhlala A.R., Kolanisi U., Abdelgadir H., Siwela M. Acceptability of a moringa-added complementary soft porridge to caregivers in Hammanskraal, Gauteng province and Lebowakgomo, Limpopo province, South Africa. S. Afr. J. Clin. Nutr. 2018 doi: 10.1080/16070658.2018.1449377.
    1. Ndong M., Uehara M., Katsumata S., Suzuki K. Effects of oral administration of Moringa oleifera Lam on glucose tolerance in goto-kakizaki and wistar rats. J. Clin. Biochem. Nutr. 2007;40:229–233. doi: 10.3164/jcbn.40.229.
    1. Gupta R., Mathur M., Bajaj V.K., Katariya P., Yadav S., Kamal R., Gupta R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes. 2012;4:164–171. doi: 10.1111/j.1753-0407.2011.00173.x.
    1. Olayaki L.A., Irekpita J.E., Yakubu M.T., Ojo O.O. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2015;26:585–593. doi: 10.1515/jbcpp-2014-0129.
    1. Tang Y., Choi E.J., Han W.C., Oh M., Kim J., Hwang J.Y., Park P.J., Moon S.H., Kim Y.S., Kim E.K. Moringa oleifera from cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in type 2 diabetic mice. J. Med. Food. 2017;20:502–510. doi: 10.1089/jmf.2016.3792.
    1. Khan W., Parveen R., Chester K., Parveen S., Ahmad S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front. Pharmacol. 2017;8:577. doi: 10.3389/fphar.2017.00577.
    1. Abd El Latif A., El Bialy Bel S., Mahboub H.D., Abd Eldaim M.A. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of beta cells and reduction of pyruvate carboxylase expression. Biochem. Cell Biol. 2014;92:413–419. doi: 10.1139/bcb-2014-0081.
    1. Yassa H.D., Tohamy A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced diabetes mellitus in adult rats. Acta Histochem. 2014;116:844–854. doi: 10.1016/j.acthis.2014.02.002.
    1. Tadera K., Minami Y., Takamatsu K., Matsuoka T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. (Tokyo) 2006;52:149–153. doi: 10.3177/jnsv.52.149.
    1. Spadafranca A., Rinelli S., Riva A., Morazzoni P., Magni P., Bertoli S., Battezzati A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br. J. Nutr. 2013;109:1789–1795. doi: 10.1017/S0007114512003741.
    1. Taweerutchana R., LumLerdkij N., Vannasaeng S., Akarasereenont P., Sriwijitkamol A. Effect of Moringa oleifera leaf capsules on glycemic control in therapy-naive type 2 diabetes patients: A randomized placebo controlled study. Evid. Based Complement. Altern. Med. 2017;2017:6581390. doi: 10.1155/2017/6581390.
    1. UNHCR Humanitarian Needs of Sahrawi Refugees in Algeria. [(accessed on 13 July 2018)]; Available online: .
    1. Grijalva-Eternod C.S., Wells J.C., Cortina-Borja M., Salse-Ubach N., Tondeur M.C., Dolan C., Meziani C., Wilkinson C., Spiegel P., Seal A.J. The double burden of obesity and malnutrition in a protracted emergency setting: A cross-sectional study of Western Sahara refugees. PLoS Med. 2012;9:e1001320. doi: 10.1371/journal.pmed.1001320.
    1. Association of Official Analytical Chemists (AOAC) Official Methods of Analisys. 15th ed. AOAC; Arlington, VA, USA: 1990.
    1. Prosky L., Asp N.G., Schweizer T.F., DeVries J.W., Furda I. Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 1988;71:1017–1023.
    1. Rocklin R.D., Pohl C.A. Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J. Liq. Chromatogr. 1983;6:1577–1590. doi: 10.1080/01483918308064876.
    1. Mawlong I., Sujith Kumar M.S., Gurung B., Singh K.H., Singh D. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int. J. Food Prop. 2017;20:3274–3281. doi: 10.1080/10942912.2017.1286353.
    1. Siddhuraju P., Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera lam.) leaves. J. Agric. Food Chem. 2003;51:2144–2155. doi: 10.1021/jf020444+.
    1. Lozano M., Tícona E., Carrasco C., Flores Y., Almanza G.R. Cuantificaci n de saponinas en residuos de quinua real chenopodium quinoa willd. Rev. Boliv. Quím. 2012;29:131–138.
    1. Bernfeld P. Amylases, alpha and beta. In: Colowick S.P., Kaplan N.O., editors. Methods in Enzymology. Volume 1. Academic Press; New York, NY, USA: 1955. pp. 149–158.
    1. Forster N., Ulrichs C., Schreiner M., Arndt N., Schmidt R., Mewis I. Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: Impact of sulfur and water availability. J. Agric. Food Chem. 2015;63:2852–2861. doi: 10.1021/jf506174v.
    1. Ramachandra Reddy A., Chaitanya K.V., Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004;161:1189–1202. doi: 10.1016/j.jplph.2004.01.013.
    1. Sreelatha S., Padma P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 2009;64:303–311. doi: 10.1007/s11130-009-0141-0.
    1. Bennett R.N., Mellon F.A., Foidl N., Pratt J.H., Dupont M.S., Perkins L., Kroon P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003;51:3546–3553. doi: 10.1021/jf0211480.
    1. Chodur G.M., Olson M.E., Wade K.L., Stephenson K.K., Nouman W., Fahey J.W. Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Sci. Rep. 2018;8:7995. doi: 10.1038/s41598-018-26059-3.
    1. Boateng L., Nyarko R., Asante M., Steiner-Asiedu M. Acceptability of complementary foods that incorporate Moringa oleifera leaf powder among infants and their caregivers. Food Nutr. Bull. 2018;39:137–148. doi: 10.1177/0379572117708656.
    1. William F., Lakshminarayanan S., Chegu H. Effect of some indian vegetables on the glucose and insulin response in diabetic subjects. Int. J. Food Sci. Nutr. 1993;44:191–195. doi: 10.3109/09637489309017439.
    1. Hanhineva K., Torronen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkanen H., Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010;11:1365–1402. doi: 10.3390/ijms11041365.
    1. Bahadoran Z., Mirmiran P., Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013;12:43. doi: 10.1186/2251-6581-12-43.
    1. Li Y.Q., Zhou F.C., Gao F., Bian J.S., Shan F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J. Agric. Food Chem. 2009;57:11463–11468. doi: 10.1021/jf903083h.
    1. Peng X., Zhang G., Liao Y., Gong D. Inhibitory kinetics and mechanism of kaempferol on alpha-glucosidase. Food Chem. 2016;190:207–215. doi: 10.1016/j.foodchem.2015.05.088.
    1. Pereira D.F., Cazarolli L.H., Lavado C., Mengatto V., Figueiredo M.S., Guedes A., Pizzolatti M.G., Silva F.R. Effects of flavonoids on alpha-glucosidase activity: Potential targets for glucose homeostasis. Nutrition. 2011;27:1161–1167. doi: 10.1016/j.nut.2011.01.008.
    1. Song J., Kwon O., Chen S., Daruwala R., Eck P., Park J.B., Levine M. Flavonoid inhibition of sodium-dependent vitamin c transporter 1 (svct1) and glucose transporter isoform 2 (glut2), intestinal transporters for vitamin c and glucose. J. Biol. Chem. 2002;277:15252–15260. doi: 10.1074/jbc.M110496200.
    1. Welsch C.A., Lachance P.A., Wasserman B.P. Dietary phenolic compounds: Inhibition of Na+-dependent d-glucose uptake in rat intestinal brush border membrane vesicles. J. Nutr. 1989;119:1698–1704. doi: 10.1093/jn/119.11.1698.
    1. Waterman C., Rojas-Silva P., Tumer T.B., Kuhn P., Richard A.J., Wicks S., Stephens J.M., Wang Z., Mynatt R., Cefalu W., et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol. Nutr. Food Res. 2015;59:1013–1024. doi: 10.1002/mnfr.201400679.
    1. Axelsson A.S., Tubbs E., Mecham B., Chacko S., Nenonen H.A., Tang Y., Fahey J.W., Derry J.M.J., Wollheim C.B., Wierup N., et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci. Transl. Med. 2017;9:eaah4477. doi: 10.1126/scitranslmed.aah4477.
    1. Domènech G., Escortell S., Gilabert R., Lucena M., Martínez M.C., Mañes J., Soriano J.M. Assessment of energy and nutrient intakes among saharawi children hosted in spain. Int. J. Child Health Hum. Dev. 2013;6:193.
    1. Boyd R., Leigh B., Stuart P. Capillary versus venous bedside blood glucose estimations. Emerg. Med. J. 2005;22:177–179. doi: 10.1136/emj.2003.011619.
    1. Colagiuri S., Sandbaek A., Carstensen B., Christensen J., Glumer C., Lauritzen T., Borch-Johnsen K. Comparability of venous and capillary glucose measurements in blood. Diabet Med. 2003;20:953–956. doi: 10.1046/j.1464-5491.2003.01048.x.

Source: PubMed

3
Abonnere