Can Gut Microbiota Affect Dry Eye Syndrome?

Jayoon Moon, Chang Ho Yoon, Se Hyun Choi, Mee Kum Kim, Jayoon Moon, Chang Ho Yoon, Se Hyun Choi, Mee Kum Kim

Abstract

Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.

Keywords: Sjögren’s syndrome; dry eye; dysbiosis; gut microbiota; ocular surface.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The major interplay pathways between gut microbiota and innate immune cells. (A) Epithelial interleukin (IL)-18 orchestrates to produce antimicrobial peptide and mucus. (B) CX3CR1+ dendritic cells prime natural killer (NK) cells fighting against enteric pathogens. (C) Group 3 innate lymphoid cells (ILC3s) produce IL-22 mediated by IL-1β and IL-23 from CD103+ or CX3CR1+ dendritic cells after sensing flagellin or segmented filamentous bacteria. IL-22 modulates epithelial cells to produce antimicrobial peptides and to stimulate surface fucosylation. (D) ILC2s produce IL-5, IL13, and amphiregulin to promote the growth of epithelial cells. (E) The microbiota affects the myelopoiesis in bone marrow, and the migration and phenotypes of circulating or tissue-resident myeloid cells. (Modified from the study by Thaiss et al. [27]).
Figure 2
Figure 2
The major interplay pathways between gut microbiota and adaptive immune cells. (A) Ig A-producing plasma cells are activated by T follicular helper (TFH) cell-dependent or TFH cell-independent pathways. Segmented filamentous bacteria (SFB), Mucispirillum, Clostridium scindens, and Akkermansia muciniphila can generate TFH cell-dependent- Ig A+ plasma cells. Microbiota-primed group 3 innate lymphoid cells (ILC-3s) interact with dendritic cells (DCs) through Lymphotoxin (LT)α and LTβ. The activated DCs promote TFH cell-independent Ig A production mediated by B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL). (B) Regulatory T (Treg) cells can be elicited by short-chain fatty acids (SCFAs), which are produced from dietary fibers by clusters IV, XIVa and XVIII of Clostridia or by polysaccharides from certain Bacteroides (Phylum: Bacteroidetes), such as B. fragilis, B. theta and B. cacae, and Bifidobacterium bifidum (Phylum: Actinobacteria). Lactobacillus reuteri and L. murinus (Phylum: Firmicutes) can also induce Treg cells. ILC-3s through GM-CSF, and CD103+ DCs through transforming growth factor (TGF)-β and IL-10 may interact with Treg cell induction. (C) SFB can elicit physiologic TH17 cell induction whereas Citrobacter rodentium can induce pathogenic TH17 cell induction. ILC-3s and CXCR1+ dendritic cells facilitate induction of TH17 cells. Upon the abundance of IL-23 and IL-1β under the environment with higher concentrations of salt, long-chain fatty acids, and saturated fatty acids, pathogenic TH17 cells secrete interferon (IFN)-γ and granulocyte–macrophage colony-stimulating factor (GM-CSF). (Modified from the study by Honda and Littman [29]).
Figure 3
Figure 3
The hypothesis of Gut dysbiosis–Ocular surface–Lacrimal gland Axis. Gut dysbiosis may induce dry eye disease by the following five mechanisms. Myeloid cell migration theory; Gut dysbiosis-mediated CD103+ or CXCR1+ dendritic cells or monocyte/macrophages migrate to drainage lymph nodes, ocular surface and lacrimal glands in order to prime T cells or secrete pro-inflammatory cytokines. Effector lymphocyte imprint theory; Gut-derived helper T 1 (TH1) and 17 (TH17) cells migrate to the ocular surface and lacrimal gland, or gut-derived Treg cells are less circulated. Molecular mimicry theory; Microbial-derived antigens cross-prime autoreactive CD4+ T cells helping B cells to produce autoantibodies. Metabolite circulation theory; Microbial metabolites, such as short-chain fatty acids, decrease to enter systemic circulation reaching ocular surface and lacrimal gland. Neuropeptide circulation theory; Homeostatic circulation of gut-derived neuropeptides is distributed to reach lacrimal gland and influence tear secretion.

References

    1. Gill S.R., Pop M., DeBoy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359. doi: 10.1126/science.1124234.
    1. Peterson J., Garges S., Giovanni M., McInnes P., Wang L., Schloss J.A., Bonazzi V., McEwen J.E., Wetterstrand K.A., Deal C., et al. The NIH Human Microbiome Project. Genome Res. 2009;19:2317–2323.
    1. Integrative H.M.P., Proctor L.M., Creasy H.H., Fettweis J.M., Lloyd-Price J., Mahurkar A., Zhou W., Buck G.A., Snyder M.P., Strauss J.F., III, et al. The Integrative Human Microbiome Project. Nat. Cell Biol. 2019;569:641–648.
    1. Kahrstrom C.T., Pariente N., Weiss U. Intestinal microbiota in health and disease. Nature. 2016;535:47. doi: 10.1038/535047a.
    1. Lee Y.K., Mazmanian S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330:1768–1773. doi: 10.1126/science.1195568.
    1. Berer K., Mues M., Koutrolos M., Al Rasbi Z., Boziki M., Johner C., Wekerle H., Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–541. doi: 10.1038/nature10554.
    1. Fleischmann R.D., Adams M.D., White O., Clayton A.R., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M., et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269:496–512. doi: 10.1126/science.7542800.
    1. Relman D.A. Microbial Genomics and Infectious Diseases. N. Engl. J. Med. 2011;365:347–357. doi: 10.1056/NEJMra1003071.
    1. Gentile C.L., Weir T.L. The gut microbiota at the intersection of diet and human health. Science. 2018;362:776–780. doi: 10.1126/science.aau5812.
    1. Segre J.A. Microbial growth dynamics and human disease. Science. 2015;349:1058–1059. doi: 10.1126/science.aad0781.
    1. Lynch S.V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266.
    1. Both T., Dalm V.A., Van Hagen P.M., van Daele P.L. Reviewing primary Sjögren’s syndrome: Beyond the dryness—From pathophysiology to diagnosis and treatment. Int. J. Med. Sci. 2017;14:191–200. doi: 10.7150/ijms.17718.
    1. Kuklinski E., Asbell P.A. Sjogren’s syndrome from the perspective of ophthalmology. Clin. Immunol. 2017;182:55–61. doi: 10.1016/j.clim.2017.04.017.
    1. Jones L., Downie L.E., Korb D., Benitez-Del-Castillo J.M., Dana R., Deng S.X., Dong P.N., Geerling G., Hida R.Y., Liu Y., et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017;15:575–628. doi: 10.1016/j.jtos.2017.05.006.
    1. Craig J.P., Nelson J.D., Azar D.T., Belmonte C., Bron A., Chauhan S.K., De Paiva C.S., Gomes J.A., Hammitt K.M., Jones L.W., et al. TFOS DEWS II Report Executive Summary. Ocul. Surf. 2017;15:802–812. doi: 10.1016/j.jtos.2017.08.003.
    1. Horai R., Caspi R.R. Microbiome and Autoimmune Uveitis. Front. Immunol. 2019;10:232. doi: 10.3389/fimmu.2019.00232.
    1. Pascal V., Pozuelo M., Borruel N., Casellas F., Campos D., Santiago A., Martinez X., Varela E., Sarrabayrouse G., Machiels K., et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–822. doi: 10.1136/gutjnl-2016-313235.
    1. Zárate-Bladés C.R., Horai R., Mattapallil M.J., Ajami N.J., Wong M., Petrosino J.F., Itoh K., Chan C.-C., Caspi R.R. Gut microbiota as a source of a surrogate antigen that triggers autoimmunity in an immune privileged site. Gut Microbes. 2017;8:59–66. doi: 10.1080/19490976.2016.1273996.
    1. Silverman G.J. The microbiome in SLE pathogenesis. Nat. Rev. Rheumatol. 2019;15:72–74. doi: 10.1038/s41584-018-0152-z.
    1. Li Z., Zhu H., Zhang L., Qin C. The intestinal microbiome and Alzheimer’s disease: A review. Anim. Model Exp. Med. 2018;1:180–188. doi: 10.1002/ame2.12033.
    1. Opazo M.C., Ortega-Rocha E.M., Coronado-Arrázola I., Bonifaz L.C., Boudin H., Neunlist M., Bueno S.M., Kalergis A.M., Riedel C.A. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front. Microbiol. 2018;9:432. doi: 10.3389/fmicb.2018.00432.
    1. Rujillo-Vargas C.M., Schaefer L., Alam J., Pflugfelder S.C., Britton R.A., De Paiva C.S. The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocul. Surf. 2020;18:335–344. doi: 10.1016/j.jtos.2019.10.006.
    1. Fabbiano S., Suárez-Zamorano N., Trajkovski M. Host–Microbiota Mutualism in Metabolic Diseases. Front. Endocrinol. 2017;8:267. doi: 10.3389/fendo.2017.00267.
    1. Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019;25:1096–1103. doi: 10.1038/s41591-019-0495-2.
    1. Muller P.A., Schneeberger M., Matheis F., Wang P., Kerner Z., Ilanges A., Pellegrino K., Del Mármol J., Castro T.B.R., Furuichi M., et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nat. Cell Biol. 2020;583:441–446. doi: 10.1038/s41586-020-2474-7.
    1. Zhao Q., Elson C.O. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154:28–37. doi: 10.1111/imm.12896.
    1. Thaiss C.A., Zmora N., Levy M., Elinav E. The microbiome and innate immunity. Nat. Cell Biol. 2016;535:65–74. doi: 10.1038/nature18847.
    1. Jiao Y., Wu L., Huntington N.D., Zhang X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front. Immunol. 2020;11:282. doi: 10.3389/fimmu.2020.00282.
    1. Honda K., Littman D.R. The microbiota in adaptive immune homeostasis and disease. Nat. Cell Biol. 2016;535:75–84. doi: 10.1038/nature18848.
    1. Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., De Sauvage F.J., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008;14:282–289. doi: 10.1038/nm1720.
    1. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.-E., Scheiermann C., et al. Neutrophil ageing is regulated by the microbiome. Nat. Cell Biol. 2015;525:528–532. doi: 10.1038/nature15367.
    1. Hill D.A., Siracusa M.C., Abt M.C., Kim B.S., Kobuley D., Kubo M., Kambayashi T., LaRosa D.F., Renner E.D., Orange J.S., et al. Commensal bacteria—Derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 2012;18:538–546. doi: 10.1038/nm.2657.
    1. Wang L., Zhu L., Qin S. Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. J. Immunol. Res. 2019;2019:1–10. doi: 10.1155/2019/4735040.
    1. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506. doi: 10.1038/s41422-020-0332-7.
    1. Guzman-Bautista E.R., Suzuki K., Asami S., Fagarasan S. Bacteria-immune cells dialog and the homeostasis of the systems. Curr. Opin. Immunol. 2020;66:82–89. doi: 10.1016/j.coi.2020.05.010.
    1. van Der Meulen T.A., Harmsen H.J., Vila A.V., Kurilshikov A., Liefers S.C., Zhernakova A., Fu J., Wijmenga C., Weersma R.K., de Leeuw K., et al. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J. Autoimmun. 2019;97:77–87. doi: 10.1016/j.jaut.2018.10.009.
    1. Wang D., Lei L. Interleukin-35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases. Int. J. Rheum. Dis. 2020:1–7. doi: 10.1111/1756-185X.13962.
    1. Jiang J., Zhao M., Chang C., Wu H., Lu Q. Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2020;59:248–272. doi: 10.1007/s12016-020-08798-2.
    1. Scher J.U., Sczesnak A., Longman R.S., Segata N., Ubeda C., Bielski C., Rostron T., Cerundolo V., Pamer E.G., Abramson S.B., et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013;2:e01202. doi: 10.7554/eLife.01202.
    1. Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:1–14. doi: 10.1186/s13073-016-0299-7.
    1. Kim J.-W., Kwok S.-K., Choe J.-Y., Park S.-H. Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019;20:4871. doi: 10.3390/ijms20194871.
    1. Azzouz D., Omarbekova A., Heguy A., Schwudke D., Gisch N., Rovin B.H., Caricchio R., Buyon J.P., Alekseyenko A.V., Silverman G.J. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann. Rheum. Dis. 2019;78:947–956. doi: 10.1136/annrheumdis-2018-214856.
    1. Guo M., Wang H., Xu S., Zhuang Y., An J., Su C., Xia Y., Chen J., Xu Z.Z., Liu Q., et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes. 2020;11:1758–1773. doi: 10.1080/19490976.2020.1768644.
    1. Vaahtovuo J., Munukka E., Korkeamäki M., Luukkainen R., Toivanen P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 2008;35:1500–1505.
    1. He Z., Shao T., Li H., Xie Z., Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016;8:64. doi: 10.1186/s13099-016-0146-9.
    1. Hevia A., Milani C., López P., Cuervo A., Arboleya S., Duranti S., Turroni F., González S., Suárez A., Gueimonde M., et al. Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. mBio. 2014;5:e01548-14. doi: 10.1128/mBio.01548-14.
    1. Luo X.M., Edwards M.R., Mu Q., Yu Y., Vieson M.D., Reilly C.M., Ahmed S.A., Bankole A.A. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Appl. Environ. Microbiol. 2017;84:e02288-17. doi: 10.1128/AEM.02288-17.
    1. Zegarra-Ruiz D.F., El Beidaq A., Iñiguez A.J., Di Ricco M.L., Vieira S.M., Ruff W.E., Mubiru D., Fine R.L., Sterpka J., Greiling T.M., et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host Microbe. 2019;25:113–127. doi: 10.1016/j.chom.2018.11.009.
    1. Rudbane S.M.A., Rahmdel S., Abdollahzadeh S.M., Zare M., Bazrafshan A., Mazloomi S.M. The efficacy of probiotic supplementation in rheumatoid arthritis: A meta-analysis of randomized, controlled trials. Inflammopharmacology. 2018;26:67–76. doi: 10.1007/s10787-017-0436-y.
    1. de la Visitación N., Robles-Vera I., Toral M., Duarte J. Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients. 2019;11:2676. doi: 10.3390/nu11112676.
    1. Johnson K.V.-A., Foster K.R. Why does the microbiome affect behaviour? Nat. Rev. Genet. 2018;16:647–655. doi: 10.1038/s41579-018-0014-3.
    1. Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018;6:133–148. doi: 10.1016/j.jcmgh.2018.04.003.
    1. Holzer P., Farzi A. Neuropeptides and the Microbiota-Gut-Brain Axis. Adv. Exp. Med. Biol. 2014;817:195–219.
    1. Hajjo H., Geva-Zatorsky N. Gut microbiota—Host interactions now also brain-immune axis. Curr. Opin. Neurobiol. 2020;62:53–59. doi: 10.1016/j.conb.2019.10.009.
    1. Barbosa R.S.D., Vieira-Coelho M.A. Probiotics and prebiotics: Focus on psychiatric disorders—A systematic review. Nutr. Rev. 2019;78:437–450. doi: 10.1093/nutrit/nuz080.
    1. Gong H., Zhang S., Li Q., Zuo C., Gao X., Zheng B., Lin M. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp. Eye Res. 2020;191:107921. doi: 10.1016/j.exer.2020.107921.
    1. Ye Z., Wu C., Zhang N., Du L., Cao Q., Huang X., Tang J., Wang Q., Li F., Zhou C., et al. Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes. 2020;11:539–555. doi: 10.1080/19490976.2019.1700754.
    1. Rowan S., Jiang S., Korem T., Szymanski J., Chang M.-L., Szelog J., Cassalman C., Dasuri K., McGuire C., Nagai R., et al. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 2017;114:E4472–E4481. doi: 10.1073/pnas.1702302114.
    1. Horai R., Zarateblades C.R., Dillenburg-Pilla P., Chen J., Kielczewski J.L., Silver P.B., Jittayasothorn Y., Chan C.-C., Yamane H., Honda K., et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. 2015;43:343–353. doi: 10.1016/j.immuni.2015.07.014.
    1. Huang X., Ye Z., Cao Q., Su G., Wang Q., Deng J., Zhou C., Kijlstra A., Yang P. Gut Microbiota Composition and Fecal Metabolic Phenotype in Patients With Acute Anterior Uveitis. Investig. Opthalmology Vis. Sci. 2018;59:1523–1531. doi: 10.1167/iovs.17-22677.
    1. Ye Z., Zhang N., Wu C., Zhang X., Wang Q., Huang X., Du L., Cao Q., Tang J., Zhou C., et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6:1–13. doi: 10.1186/s40168-018-0520-6.
    1. Shimizu J., Kubota T., Takada E., Takai K., Fujiwara N., Arimitsu N., Ueda Y., Wakisaka S., Suzuki T., Suzuki N. Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet’s disease (210 characters) Clin. Rheumatol. 2019;38:1437–1445. doi: 10.1007/s10067-018-04419-8.
    1. Janowitz C., Nakamura Y.K., Metea C., Gligor A., Yu W., Karstens L., Rosenbaum J.T., Asquith M., Lin P. Disruption of Intestinal Homeostasis and Intestinal Microbiota During Experimental Autoimmune Uveitis. Investig. Opthalmology Vis. Sci. 2019;60:420–429. doi: 10.1167/iovs.18-24813.
    1. Du Z., Wang Q., Huang X., Yi S., Mei S., Yuan G., Su G., Cao Q., Zhou C., Wang Y., et al. Effect of berberine on spleen transcriptome and gut microbiota composition in experimental autoimmune uveitis. Int. Immunopharmacol. 2020;81:106270. doi: 10.1016/j.intimp.2020.106270.
    1. Chakravarthy S.K., Jayasudha R., Prashanthi G.S., Ali M.H., Sharma S., Tyagi M., Shivaji S. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J. Microbiol. 2018;58:457–469. doi: 10.1007/s12088-018-0746-9.
    1. Zinkernagel M.S., Zysset-Burri D.C., Keller I., Berger L.E., Leichtle A.B., Largiadèr C.R., Fiedler G.M., Wolf S. Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Sci. Rep. 2017;7:40826. doi: 10.1038/srep40826.
    1. Shi Z., Qiu Y., Wang J., Fang Y., Zhang Y., Chen H., Du Q., Zhao Z., Yan C., Yang M., et al. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study. J. Neuroimmunol. 2020;339:577126. doi: 10.1016/j.jneuroim.2019.577126.
    1. Gong J., Qiu W., Zeng Q., Liu X., Sun X., Li H., Yang Y., Wu A., Bao J., Wang Y., et al. Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: A Chinese pilot study. Mult. Scler. J. 2018;25:1316–1325. doi: 10.1177/1352458518790396.
    1. Cree B.A.C., Spencer C.M., Varrin-Doyer M., Baranzini S.E., Zamvil S.S. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann. Neurol. 2016;80:443–447. doi: 10.1002/ana.24718.
    1. Lin P., Bach M., Asquith M., Lee A.Y., Akileswaran L., Stauffer P., Davin S., Pan Y., Cambronne E.D., Dorris M., et al. HLA-B27 and Human beta2-Microglobulin Affect the Gut Microbiota of Transgenic Rats. PLoS ONE. 2014;9:e105684.
    1. Andriessen E.M., Wilson A.M., Mawambo G., Dejda A., Miloudi K., Sennlaub F., Sapieha P. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol. Med. 2016;8:1366–1379. doi: 10.15252/emmm.201606531.
    1. Kugadas A., Wright Q., Geddes-McAlister J., Gadjeva M. Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA. Investig. Opthalmology Vis. Sci. 2017;58:4593–4600. doi: 10.1167/iovs.17-22119.
    1. Kodati S., Sen H.N. Uveitis and the gut microbiota. Best Pract. Res. Clin. Rheumatol. 2019;33:101500. doi: 10.1016/j.berh.2020.101500.
    1. Horai R., Sen H.N., Caspi R.R. Commensal microbiota as a potential trigger of autoimmune uveitis. Expert Rev. Clin. Immunol. 2017;13:291–293. doi: 10.1080/1744666X.2017.1288098.
    1. Nakamura Y.K., Metea C., Karstens L., Asquith M., Gruner H., Moscibrocki C., Lee I., Brislawn C.J., Jansson J.K., Rosenbaum J.T., et al. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis. Investig. Opthalmol. Vis. Sci. 2016;57:3747–3758. doi: 10.1167/iovs.16-19733.
    1. Du L., Kijlstra A., Yang P. Vogt-Koyanagi-Harada disease: Novel insights into pathophysiology, diagnosis and treatment. Prog. Retin. Eye Res. 2016;52:84–111. doi: 10.1016/j.preteyeres.2016.02.002.
    1. Liang L., Tan X., Zhou Q., Tian Y., Kijlstra A., Yang P. TLR3 and TLR4 But not TLR2 are Involved in Vogt-Koyanagi-Harada Disease by Triggering Proinflammatory Cytokines Production Through Promoting the Production of Mitochondrial Reactive Oxygen Species. Curr. Mol. Med. 2015;15:529–542. doi: 10.2174/1566524015666150731095611.
    1. Rinninella E., Mele M.C., Merendino N., Cintoni M., Anselmi G., Caporossi A., Gasbarrini A., Minnella A.M. The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut–Retina Axis. Nutrients. 2018;10:1677. doi: 10.3390/nu10111677.
    1. Lin P. Importance of the intestinal microbiota in ocular inflammatory diseases: A review. Clin. Exp. Ophthalmology. 2019;47:418–422. doi: 10.1111/ceo.13493.
    1. Gill T., Asquith M., Rosenbaum J.T., Colbert R.A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol. 2015;27:319–325. doi: 10.1097/BOR.0000000000000187.
    1. Mancino R., Martucci A., Cesareo M., Giannini C., Corasaniti M.T., Bagetta G., Nucci C. Glaucoma and Alzheimer Disease: One Age-Related Neurodegenerative Disease of the Brain. Curr. Neuropharmacol. 2018;16:971–977. doi: 10.2174/1570159X16666171206144045.
    1. Skrzypecki J., Żera T., Ufnal M. Butyrate, a Gut Bacterial Metabolite, Lowers Intraocular Pressure in Normotensive But Not in Hypertensive Rats. J. Glaucoma. 2018;27:823–827. doi: 10.1097/IJG.0000000000001025.
    1. Ratelade J., Verkman A. Neuromyelitis optica: Aquaporin-4 based pathogenesis mechanisms and new therapies. Int. J. Biochem. Cell Biol. 2012;44:1519–1530. doi: 10.1016/j.biocel.2012.06.013.
    1. Wang C., Zaheer M., Bian F., Quach D., Swennes A.G., Britton R.A., Pflugfelder S.C., De Paiva C.S. Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int. J. Mol. Sci. 2018;19:565. doi: 10.3390/ijms19020565.
    1. Yanagisawa N., Ueshiba H., Abe Y., Kato H., Higuchi T., Yagi J. Outer Membrane Protein of Gut Commensal Microorganism Induces Autoantibody Production and Extra-Intestinal Gland Inflammation in Mice. Int. J. Mol. Sci. 2018;19:3241. doi: 10.3390/ijms19103241.
    1. Choi S.H., Oh J.W., Ryu J.S., Kim H.M., Im S.-H., Kim K.P., Kim M.K. IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Investig. Opthalmology Vis. Sci. 2020;61:42. doi: 10.1167/iovs.61.3.42.
    1. Bron A.J., De Paiva C.S., Chauhan S.K., Bonini S., Gabison E.E., Jain S., Knop E., Markoulli M., Ogawa Y., Perez V., et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017;15:438–510. doi: 10.1016/j.jtos.2017.05.011.
    1. Chauhan S.K., Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol. 2009;2:375–376. doi: 10.1038/mi.2009.21.
    1. de Paiva C.S., Chotikavanich S., Pangelinan S.B., Pitcher J.D., Fang B., Zheng X., Ma P., Farley W.J., Siemasko K.F., Niederkorn J.Y., et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2:243–253. doi: 10.1038/mi.2009.5.
    1. Albert L.J., Inman R.D. Molecular Mimicry and Autoimmunity. N. Engl. J. Med. 1999;341:2068–2074. doi: 10.1056/NEJM199912303412707.
    1. Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V., et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell. 2009;139:485–498. doi: 10.1016/j.cell.2009.09.033.
    1. Stern M.E., Schaumburg C.S., Pflugfelder S.C. Dry Eye as a Mucosal Autoimmune Disease. Int. Rev. Immunol. 2013;32:19–41. doi: 10.3109/08830185.2012.748052.
    1. Perez V.L., Pflugfelder S.C., Zhang S., Shojaei A., Haque R. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul. Surf. 2016;14:207–215. doi: 10.1016/j.jtos.2016.01.001.
    1. Yao Y., Ma J.-F., Chang C., Xu T., Gao C.-Y., Gershwin M.E., Lian Z.-X. Immunobiology of T Cells in Sjögren’s Syndrome. Clin. Rev. Allergy Immunol. 2020:1–21. doi: 10.1007/s12016-020-08793-7.
    1. Ainola M., Porola P., Takakubo Y., Przybyla B., Kouri V.P., Tolvanen T.A., Hänninen A., Nordström D.C. Activation of plasmacytoid dendritic cells by apoptotic particles—Mechanism for the loss of immunological tolerance in Sjögren’s syndrome. Clin. Exp. Immunol. 2018;191:301–310. doi: 10.1111/cei.13077.
    1. Verstappen G.M., Corneth O.B., Bootsma H., Kroese F.G. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity. J. Autoimmun. 2018;87:16–25. doi: 10.1016/j.jaut.2017.11.003.
    1. Bacman S., Sterin-Borda L., Camusso J.J., Arana R., Hübscher O., Borda E. Circulating antibodies against rat parotid gland M3 muscarinic receptors in primary Sjögren’s syndrome. Clin. Exp. Immunol. 1996;104:454–459. doi: 10.1046/j.1365-2249.1996.42748.x.
    1. Baudouin C., Messmer E.M., Aragona P., Geerling G., Akova Y.A., Benítez-Del-Castillo J., Boboridis K.G., Merayo-Lloves J., Rolando M., Labetoulle M. Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016;100:300–306. doi: 10.1136/bjophthalmol-2015-307415.
    1. Yoon C.H., Ryu J.S., Hwang H.S., Kim M.K. Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. Int. J. Mol. Sci. 2020;21:4169. doi: 10.3390/ijms21114169.
    1. Dogru M., Kojima T., Şimşek C., Tsubota K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investig. Opthalmology Vis. Sci. 2018;59:DES163–DES168. doi: 10.1167/iovs.17-23402.
    1. Uchino Y., Kawakita T., Miyazawa M., Ishii T., Onouchi H., Yasuda K., Ogawa Y., Shimmura S., Ishii N., Tsubota K. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production. PLoS ONE. 2012;7:e45805. doi: 10.1371/journal.pone.0045805.
    1. Jester J.V., Parfitt G.J., Brown D.J. Meibomian gland dysfunction: Hyperkeratinization or atrophy? BMC Ophthalmol. 2015;15(Suppl. S1):3–11. doi: 10.1186/s12886-015-0132-x.
    1. Ding C., Nandoskar P., Lu M., Thomas P., Trousdale M.D., Wang Y. Changes of Aquaporins in the Lacrimal Glands of a Rabbit Model of Sjögren’s Syndrome. Curr. Eye Res. 2011;36:571–578. doi: 10.3109/02713683.2011.574330.
    1. Delporte C. Aquaporins in Secretory Glands and their Role in Sjögren’s Syndrome. In: Beitz E., editor. Aquaporins. Springer; Berlin/Heidelberg, Germany: 2009. pp. 185–201.
    1. Soyfoo M.S., Chivasso C., Perret J., Delporte C. Involvement of Aquaporins in the Pathogenesis, Diagnosis and Treatment of Sjögren’s Syndrome. Int. J. Mol. Sci. 2018;19:3392. doi: 10.3390/ijms19113392.
    1. van Deursen J.M. The role of senescent cells in ageing. Nat. Cell Biol. 2014;509:439–446. doi: 10.1038/nature13193.
    1. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nat. Cell Biol. 2013;500:232–236. doi: 10.1038/nature12331.
    1. Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA. 2010;107:12204–12209. doi: 10.1073/pnas.0909122107.
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., Glickman J.N., Garrett W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science. 2013;341:569–573. doi: 10.1126/science.1241165.
    1. Barr J.Y., Wang X., Meyerholz D.K., Lieberman S.M. CD8 T cells contribute to lacrimal gland pathology in the nonobese diabetic mouse model of Sjögren syndrome. Immunol. Cell Biol. 2017;95:684–694. doi: 10.1038/icb.2017.38.
    1. Brkic Z., Corneth O., van Helden-Meeuwsen C.G., Dolhain R.J., Maria N.I., Paulissen S.M.J., Davelaar N., Van Hamburg J.P., van Daele P.L., Dalm V.A., et al. T-helper 17 cell cytokines and interferon type I: Partners in crime in systemic lupus erythematosus? Arthritis Res. Ther. 2014;16:R62. doi: 10.1186/ar4499.
    1. Pernis A.B. Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J. Intern. Med. 2009;265:644–652. doi: 10.1111/j.1365-2796.2009.02099.x.
    1. de Paiva C.S., Jones D.B., Stern M.E., Bian F., Moore Q.L., Corbiere S., Streckfus C.F., Hutchinson D.S., Ajami N.J., Petrosino J.F., et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Sci. Rep. 2016;6:23561. doi: 10.1038/srep23561.
    1. Wang C., Schaefer L., Bian F., Yu Z., Pflugfelder S.C., Britton R.A., De Paiva C.S. Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. Investig. Opthalmology Vis. Sci. 2019;60:4224–4233. doi: 10.1167/iovs.19-27939.
    1. Zaheer M., Wang C., Bian F., Yu Z., Hernandez H., De Souza R.G., Simmons K.T., Schady D., Swennes A.G., Pflugfelder S.C., et al. Protective role of commensal bacteria in Sjögren Syndrome. J. Autoimmun. 2018;93:45–56. doi: 10.1016/j.jaut.2018.06.004.
    1. Wu Y., Wu J., Bu J., Tang L.-Y., Yang Y., Ouyang W., Lin X., Liu Z., Huang C., Quantock A.J., et al. High-fat diet induces dry eye-like ocular surface damages in murine. Ocul. Surf. 2020;18:267–276. doi: 10.1016/j.jtos.2020.02.009.
    1. Szymula A., Rosenthal J., Szczerba B.M., Bagavant H., Fu S.M., Deshmukh U.S. T cell epitope mimicry between Sjogren’s syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin. Immunol. 2014;152:1–9. doi: 10.1016/j.clim.2014.02.004.
    1. Moon J., Choi S.H., Yoon C.H., Kim M.K. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS ONE. 2020;15:e0229029. doi: 10.1371/journal.pone.0229029.
    1. Mendez R., Watane A., Farhangi M., Cavuoto K.M., Leith T., Budree S., Galor A., Banerjee S. Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microb. Cell Factories. 2020;19:1–13. doi: 10.1186/s12934-020-01348-7.
    1. Mandl T., Marsal J., Olsson P., Ohlsson B., Andréasson K. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res. 2017;19:237. doi: 10.1186/s13075-017-1446-2.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75.
    1. Tsai Y.-L., Lin T.-L., Chang C.-J., Wu T.-R., Lai W.-F., Lu C.-C., Lai H.-C. Probiotics, prebiotics and amelioration of diseases. J. Biomed. Sci. 2019;26:1–8. doi: 10.1186/s12929-018-0493-6.
    1. Liu Y., Alookaran J.J., Rhoads J.M. Probiotics in Autoimmune and Inflammatory Disorders. Nutrients. 2018;10:1537. doi: 10.3390/nu10101537.
    1. Kawashima M., Nakamura S., Izuta Y., Inoue S., Tsubota K. Dietary Supplementation with a Combination of Lactoferrin, Fish Oil, and Enterococcus faecium WB2000 for Treating Dry Eye: A Rat Model and Human Clinical Study. Ocul. Surf. 2016;14:255–263. doi: 10.1016/j.jtos.2015.12.005.
    1. Kim J., Choi S.H., Kim Y.J., Jeong H.J., Ryu J.S., Lee H.J., Kim T.W., Im S.-H., Oh J.Y., Kim M.K. Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients. 2017;9:1166. doi: 10.3390/nu9111166.
    1. Chisari G., Chisari E.M., Ozyalcin E., Borzì A.M., Chisari C.G. Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus faecium and Saccharomyces boulardii. Curr. Clin. Pharmacol. 2018;12:99–105. doi: 10.2174/1574884712666170704145046.
    1. Chisari G., Chisari E.M., Francaviglia A., Chisari C.G. The mixture of bifidobacterium associated with fructo-oligosaccharides reduces the damage of the ocular surface. La Clin. Ter. 2017;168:e181–e185.
    1. Kawashima M., Tsuno S., Matsumoto M., Tsubota K. Hydrogen-producing milk to prevent reduction in tear stability in persons using visual display terminals. Ocul. Surf. 2019;17:714–721. doi: 10.1016/j.jtos.2019.07.008.
    1. Hansen C.H.F., Larsen C.S., Petersson H.O., Zachariassen L.F., Vegge A., Lauridsen C., Kot W., Krych Ł., Nielsen D.S., Hansen A.K. Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice. Diabetologia. 2019;62:1689–1700. doi: 10.1007/s00125-019-4910-5.
    1. Ghattargi V., Gaikwad M.A., Meti B.S., Nimonkar Y.S., Dixit K., Prakash O., Shouche Y.S., Pawar S.P., Dhotre D. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genom. 2018;19:652. doi: 10.1186/s12864-018-5043-9.
    1. Azad M., Kalam A., Sarker M., Li T., Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res. Int. 2018;2018:9478630. doi: 10.1155/2018/9478630.
    1. Papizadeh M., Rohani M., Nahrevanian H., Javadi A., Pourshafie M.R. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb. Pathog. 2017;111:118–131. doi: 10.1016/j.micpath.2017.08.021.
    1. MacGregor G., Smith A.J., Thakker B., Kinsella J. Yoghurt biotherapy: Contraindicated in immunosuppressed patients? Postgrad. Med. J. 2002;78:366–367. doi: 10.1136/pmj.78.920.366.
    1. Pflugfelder S.C., Corrales R.M., De Paiva C.S. T helper cytokines in dry eye disease. Exp. Eye Res. 2013;117:118–125. doi: 10.1016/j.exer.2013.08.013.
    1. Clemente J.C., Manasson J., Scher J.U. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j5145. doi: 10.1136/bmj.j5145.
    1. Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Liver Physiol. 2012;303:G1288–G1295. doi: 10.1152/ajpgi.00341.2012.

Source: PubMed

3
Abonnere