Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study

Elena Schiopu, Soumya Chatterjee, Vivien Hsu, Armando Flor, Daniel Cimbora, Kaushik Patra, Wenliang Yao, Jing Li, Katie Streicher, Kathleen McKeever, Barbara White, Eliezer Katz, Jorn Drappa, Sarah Sweeny, Ronald Herbst, Elena Schiopu, Soumya Chatterjee, Vivien Hsu, Armando Flor, Daniel Cimbora, Kaushik Patra, Wenliang Yao, Jing Li, Katie Streicher, Kathleen McKeever, Barbara White, Eliezer Katz, Jorn Drappa, Sarah Sweeny, Ronald Herbst

Abstract

Background: Systemic sclerosis (SSc) is a clinically heterogeneous, life-threatening disease characterized by fibrosis, microvasculopathy, and autoimmunity. Extensive nonclinical and clinical data implicate B cells in the pathogenesis of SSc. MEDI-551 is an investigational humanized monoclonal antibody that targets the B cell surface antigen CD19 and mediates antibody-dependent, cell-mediated cytotoxicity of B cells. This clinical study evaluated the safety and tolerability, pharmacokinetics, and pharmacodynamics of MEDI-551 in subjects with SSc.

Methods: This phase I multicenter, randomized, double-blind, placebo-controlled, single escalating dose study enrolled adult subjects with either limited or diffuse cutaneous SSc. A single intravenous dose of MEDI-551 was administered, and safety and tolerability were evaluated. MEDI-551 pharmacokinetics (PK), pharmacodynamics, and immunogenicity were also assessed. Safety assessments included the incidence of adverse events and changes in clinical and laboratory results. MEDI-551 serum concentrations, effects on circulating and tissue B cells and plasma cells (PCs), and antidrug antibodies were analyzed. Modified Rodnan skin score (MRSS) and pulmonary function tests were used to explore the clinical effect of MEDI-551.

Results: The study enrolled 28 subjects with SSc (mean age, 47.3 years; 67.9 % female). Twenty-four received a single dose of MEDI-551 (0.1-10.0 mg/kg) and four received placebo. Treatment-emergent adverse events (TEAEs) occurred in 95.8 % of subjects in the MEDI-551 group and in 75.0 % of subjects in the placebo group; the majority of TEAEs were mild or moderate in severity. Two serious adverse events were considered possibly related to the study drug. One death, deemed not related to the study drug, occurred in a MEDI-551-treated subject. MEDI-551 exhibited linear PK in the dose range of 1.0 to 10.0 mg/kg, and more rapid clearance at lower doses. Dose-dependent depletion of circulating B cells and plasma cells was observed. MRSS assessments suggest a possible clinical effect of MEDI-551 on affected skin.

Conclusions: A single escalating dose of MEDI-551 was tolerable and safe in this subject population. B cell depletion was achieved and was dose dependent. A signal of clinical effect was observed. Based on these results, further investigation of MEDI-551 as a disease-modifying treatment for SSc is warranted.

Trial registration: www.clinicaltrials.gov identifier, NCT00946699 ; registered 23 July 2009.

Keywords: B cells; CD19; Pharmacodynamics; Pharmacokinetics; Scleroderma; Systemic sclerosis.

Figures

Fig. 1
Fig. 1
Study design. Number of subjects in each group includes those who received MEDI-551 and those who received placebo. LTFU long-term follow-up
Fig. 2
Fig. 2
Subject disposition
Fig. 3
Fig. 3
Pharmacokinetics of MEDI-551. Serum concentration-time profile of MEDI-551 following a single IV administration
Fig. 4
Fig. 4
Effect of MEDI-551 on peripheral B cells. Median B cell counts over time, by MEDI-551 dose. B cell counts are presented as % of day 1 values. The data plotted represent only those subjects for which B cell counts are available at each time point. The number of subjects in the analysis in each group at each time point is tabulated below the graph. This number declines over time as subjects exit the study following B cell repletion
Fig. 5
Fig. 5
Effect of MEDI-551 on plasma cell signature in blood. Mean values are plotted. Bars represent standard error of the mean. PC plasma cells

References

    1. Desbois AC, Cacoub P. Systemic sclerosis: an update in 2016. Autoimmun Rev. 2016;15(5):417–26. doi: 10.1016/j.autrev.2016.01.007.
    1. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–47. doi: 10.1002/art.38098.
    1. Cappelli S, Bellando-Randone S, Guiducci S, Matucci-Cerinic M. Is immunosuppressive therapy the anchor treatment to achieve remission in systemic sclerosis? Rheumatology (Oxford) 2014;53:975–87. doi: 10.1093/rheumatology/ket312.
    1. Kowal-Bielecka O, Landewe R, Avouac J, Chwiesko S, Miniati I, Czirjak L, et al. EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR) Ann Rheum Dis. 2009;68:620–8. doi: 10.1136/ard.2008.096677.
    1. Mayes MD, Lacey JV, Jr, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003;48:2246–55. doi: 10.1002/art.11073.
    1. Bosello S, De LG, Tolusso B, Lama G, Angelucci C, Sica G, et al. B cells in systemic sclerosis: a possible target for therapy. Autoimmun Rev. 2011;10:624–30. doi: 10.1016/j.autrev.2011.04.013.
    1. Hasegawa M. B lymphocytes: shedding new light on the pathogenesis of systemic sclerosis. J Dermatol. 2010;37:3–10. doi: 10.1111/j.1346-8138.2009.00763.x.
    1. Sakkas LI, Bogdanos DP. Systemic sclerosis: new evidence re-enforces the role of B cells. Autoimmun Rev. 2016;15:155–61. doi: 10.1016/j.autrev.2015.10.005.
    1. Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology (Oxford) 2006;45 Suppl 3:iii23–5.
    1. Sato S, Fujimoto M, Hasegawa M, Takehara K. Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004;50:1918–27. doi: 10.1002/art.20274.
    1. Bosello S, De SM, Lama G, Spano C, Angelucci C, Tolusso B, et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther. 2010;12:R54. doi: 10.1186/ar2965.
    1. Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C, et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 2010;49:271–80. doi: 10.1093/rheumatology/kep093.
    1. Fleischmajer R, Perlish JS, Reeves JR. Cellular infiltrates in scleroderma skin. Arthritis Rheum. 1977;20:975–84. doi: 10.1002/art.1780200410.
    1. Lafyatis R, Kissin E, York M, Farina G, Viger K, Fritzler MJ, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2009;60:578–83. doi: 10.1002/art.24249.
    1. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003;100:12319–24. doi: 10.1073/pnas.1635114100.
    1. Lanteri A, Sobanski V, Langlois C, Lefevre G, Hauspie C, Sanges S, et al. Serum free light chains of immunoglobulins as biomarkers for systemic sclerosis characteristics, activity and severity. Autoimmun Rev. 2014;13:974–80. doi: 10.1016/j.autrev.2014.07.003.
    1. Sato S, Fujimoto M, Hasegawa M, Takehara K, Tedder TF. Altered B lymphocyte function induces systemic autoimmunity in systemic sclerosis. Mol Immunol. 2004;41:1123–33. doi: 10.1016/j.molimm.2004.06.025.
    1. Hasegawa M, Sato S, Takehara K. Augmented production of transforming growth factor-beta by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. Arch Dermatol Res. 2004;296:89–93. doi: 10.1007/s00403-004-0472-5.
    1. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54:192–201. doi: 10.1002/art.21526.
    1. Denton CP. Systemic sclerosis: from pathogenesis to targeted therapy. Clin Exp Rheumatol. 2015;33:S3–7.
    1. Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Paliogianni F, Sirinian C, et al. Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin Exp Rheumatol. 2012;30:S17–22.
    1. Jordan S, Distler JH, Maurer B, Huscher D, van Laar JM, Allanore Y, et al. Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. 2015;74:1188–94. doi: 10.1136/annrheumdis-2013-204522.
    1. Smith V, Van Praet JT, Vandooren B, Van der Cruyssen B, Naeyaert JM, Decuman S, et al. Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis. 2010;69:193–7. doi: 10.1136/ard.2008.095463.
    1. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165:6635–43. doi: 10.4049/jimmunol.165.11.6635.
    1. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M, et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther. 2010;335:213–22. doi: 10.1124/jpet.110.168062.
    1. Ward E, Mittereder N, Kuta E, Sims GP, Bowen MA, Dall’Acqua W, et al. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011;155:426–37. doi: 10.1111/j.1365-2141.2011.08857.x.
    1. Clements PJ, Lachenbruch PA, Seibold JR, Zee B, Steen VD, Brennan P, et al. Skin thickness score in systemic sclerosis: an assessment of interobserver variability in 3 independent studies. J Rheumatol. 1993;20:1892–6.
    1. Streicher K, Morehouse CA, Groves CJ, Rajan B, Pilataxi F, Lehmann KP, et al. The plasma cell signature in autoimmune disease. Arthritis Rheumatol. 2014;66:173–84. doi: 10.1002/art.38194.
    1. Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.
    1. Khanna D, Furst DE, Hays RD, Park GS, Wong WK, Seibold JR, et al. Minimally important difference in diffuse systemic sclerosis: results from the D-penicillamine study. Ann Rheum Dis. 2006;65:1325–9. doi: 10.1136/ard.2005.050187.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159:179–87. doi: 10.1164/ajrccm.159.1.9712108.
    1. Hankinson JL, Crapo RO, Jensen RL. Spirometric reference values for the 6-s FVC maneuver. Chest. 2003;124:1805–11. doi: 10.1378/chest.124.5.1805.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38. doi: 10.1183/09031936.05.00034805.
    1. Bertina RM. The prothrombin 20210 G to A variation and thrombosis. Curr Opin Hematol. 1998;5:339–42. doi: 10.1097/00062752-199809000-00006.
    1. Rituxan [package insert]. South San Francisco, CA: Genentech, Inc., 2014.
    1. Lemtrada [package insert]. Cambridge, MA: Genzyme Corporation, 2014.
    1. Chung CH. Managing premedications and the risk for reactions to infusional monoclonal antibody therapy. Oncologist. 2008;13:725–32. doi: 10.1634/theoncologist.2008-0012.
    1. Brennan PJ, Rodriguez BT, Hsu FI, Sloane DE, Castells MC. Hypersensitivity reactions to mAbs: 105 desensitizations in 23 patients, from evaluation to treatment. J Allergy Clin Immunol. 2009;124:1259–66. doi: 10.1016/j.jaci.2009.09.009.
    1. Baldo BA. Adverse events to monoclonal antibodies used for cancer therapy: Focus on hypersensitivity responses. Oncoimmunology. 2013;2:e26333. doi: 10.4161/onci.26333.
    1. van Vollenhoven RF, Emery P, Bingham CO, III, Keystone EC, Fleischmann RM, Furst DE, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72:1496–502. doi: 10.1136/annrheumdis-2012-201956.
    1. Clifford DB, Ances B, Costello C, Rosen-Schmidt S, Andersson M, Parks D, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol. 2011;68:1156–64. doi: 10.1001/archneurol.2011.103.
    1. Harris HE. Progressive multifocal leucoencephalopathy in a patient with systemic lupus erythematosus treated with rituximab. Rheumatology (Oxford) 2008;47:224–5. doi: 10.1093/rheumatology/kem299.
    1. Rios-Fernandez R, Gutierrez-Salmeron MT, Callejas-Rubio JL, Fernandez-Pugnaire M, Ortego-Centeno N. Late-onset neutropenia following rituximab treatment in patients with autoimmune diseases. Br J Dermatol. 2007;157:1271–3. doi: 10.1111/j.1365-2133.2007.08189.x.
    1. Dunleavy K, Tay K, Wilson WH. Rituximab-associated neutropenia. Semin Hematol. 2010;47:180–6. doi: 10.1053/j.seminhematol.2010.01.009.
    1. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:493–507. doi: 10.2165/11531280-000000000-00000.
    1. Sfikakis PP, Boletis JN, Tsokos GC. Rituximab anti-B-cell therapy in systemic lupus erythematosus: pointing to the future. Curr Opin Rheumatol. 2005;17:550–7. doi: 10.1097/01.bor.0000172798.26249.fc.
    1. Huang H, Benoist C, Mathis D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc Natl Acad Sci U S A. 2010;107:4658–63. doi: 10.1073/pnas.1001074107.
    1. Engel P, Gomez-Puerta JA, Ramos-Casals M, Lozano F, Bosch X. Therapeutic targeting of B cells for rheumatic autoimmune diseases. Pharmacol Rev. 2011;63:127–56. doi: 10.1124/pr.109.002006.
    1. Mahevas M, Michel M, Weill JC, Reynaud CA. Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front Immunol. 2013;4:494. doi: 10.3389/fimmu.2013.00494.
    1. DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol. 2008;180:361–71. doi: 10.4049/jimmunol.180.1.361.
    1. Owczarczyk K, Lal P, Abbas AR, Wolslegel K, Holweg CT, Dummer W, et al. A plasmablast biomarker for nonresponse to antibody therapy to CD20 in rheumatoid arthritis. Sci Transl Med. 2011;3:101ra92. doi: 10.1126/scitranslmed.3002432.
    1. Dalakas MC. B cells as therapeutic targets in autoimmune neurological disorders. Nat Clin Pract Neurol. 2008;4:557–67. doi: 10.1038/ncpneuro0901.
    1. Tedder TF. CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:572–7. doi: 10.1038/nrrheum.2009.184.
    1. Eisenberg R, Looney RJ. The therapeutic potential of anti-CD20: What do B-cells do? Clin Immunol. 2005;117:207–13. doi: 10.1016/j.clim.2005.08.006.
    1. Sabahi R, Anolik JH. B-cell-targeted therapy for systemic lupus erythematosus. Drugs. 2006;66:1933–48. doi: 10.2165/00003495-200666150-00004.
    1. Daoussis D, Liossis SN. B cells tell scleroderma fibroblasts to produce collagen. Arthritis Res Ther. 2013;15:125. doi: 10.1186/ar4392.
    1. Francois A, Chatelus E, Wachsmann D, Sibilia J, Bahram S, Alsaleh G, et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther. 2013;15:R168. doi: 10.1186/ar4352.

Source: PubMed

3
Abonnere