Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults

Aedin Cassidy, Gail Rogers, Julia J Peterson, Johanna T Dwyer, Honghuang Lin, Paul F Jacques, Aedin Cassidy, Gail Rogers, Julia J Peterson, Johanna T Dwyer, Honghuang Lin, Paul F Jacques

Abstract

Background: Although growing evidence from trials and population-based studies has supported a protective role for flavonoids in relation to risk of certain chronic diseases, the underlying mechanisms remain unclear. Several previous studies focused on individual inflammatory biomarkers, but because of the limited specificity of any individual marker, an assessment of a combination of biomarkers may be more informative.

Objective: We used an inflammation score (IS) that integrated 12 individual inflammatory biomarkers for the examination of associations with intakes of different flavonoid classes.

Design: The study was a cross-sectional analysis of 2375 Framingham Heart Study Offspring Cohort participants. Intakes of total flavonoids and their classes (anthocyanins, flavonols, flavanones, flavan-3-ols, polymers, and flavones) were calculated from validated food-frequency questionnaires. Individual inflammatory biomarkers were ranked, standardized, and summed to derive an overall IS and subgroup scores of functionally related biomarkers.

Results: In multivariate analyses, an inverse association between higher anthocyanin and flavonol intakes and IS was observed with a mean ± SE difference between quintile categories 5 and 1 of -1.48 ± 0.32 (P-trend ≤ 0.001) and -0.72 ± 0.33 (P-trend = 0.01), respectively. Results remained significant after additional adjustment for physical activity and vitamin C and fruit and vegetable intakes. Higher anthocyanin intake was inversely associated with all biomarker subgroups, whereas higher flavonol intake was associated only with lower cytokine and oxidative stress biomarker concentrations. In food-based analyses, higher intakes of apples and pears, red wine, and strawberries were associated with a lower IS with differences between quintiles 5 and 1 of -1.02 ± 0.43 (P = 0.006), -1.73 ± 0.39 (P < 0.001), and -0.44 ± 0.88 (P = 0.02), respectively. Although intakes of other classes were not associated with a reduction in overall IS, higher intakes of flavan-3-ols and their polymers were associated with a significant reduction in oxidative stress biomarkers.

Conclusion: These findings provide evidence to suggest that an anti-inflammatory effect may be a key component underlying the reduction in risk of certain chronic diseases associated with higher intakes of anthocyanins and flavonols. The Framingham Offspring Study was registered at clinicaltrials.gov as NCT00005121 (Framingham Heart Study).

Keywords: anthocyanins; dietary intake; flavonoids; flavonols; inflammation.

© 2015 American Society for Nutrition.

References

    1. Cassidy A, Huang T, Rice MS, Rimm EB, Tworoger SS. Intake of dietary flavonoids and risk of epithelial ovarian cancer. Am J Clin Nutr 2014;100:1344–51.
    1. Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013;127:188–96.
    1. Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 2012;72:135–43.
    1. Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 2012;78:1138–45.
    1. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 2013;143:1474–80.
    1. McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 2012;95:454–64.
    1. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012;95:925–33.
    1. Zamora-Ros R, Sacerdote C, Ricceri F, Weiderpass E, Roswall N, Buckland G, St-Jules DE, Overvad K, Kyro C, Fagherazzi G, et al. . Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Cancer 2014;111:1870–80.
    1. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7.
    1. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011;29:415–45.
    1. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jonsson LS, Latulippe ME, Marcos A, et al. . A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 2013;109(Suppl 1):S1–34.
    1. Romier B, Schneider YJ, Larondelle Y, During A. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr Rev 2009;67:363–78.
    1. Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 2009;57:6485–501.
    1. van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, Roger LC, Possemiers S, Smilde AK, Dore J, et al. . Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci USA 2011;108(Suppl 1):4531–8.
    1. Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012;33:83–97.
    1. Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 2014;144:202–8.
    1. Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, Hu FB, van Dam RM. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. J Nutr 2011;141:618–25.
    1. Cassidy A, O'Reilly EJ, Kay C, Sampson L, Franz M, Forman JP, Curhan G, Rimm EB. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr 2011;93:338–47.
    1. Feskanich D, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, Litin LB, Willett WC. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 1993;93:790–6.
    1. Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Colditz GA, Rosner B, Willett WC. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 1989;18:858–67.
    1. Krogholm KS, Bysted A, Brantsaeter AL, Jakobsen J, Rasmussen SE, Kristoffersen L, Toft U. Evaluation of flavonoids and enterolactone in overnight urine as intake biomarkers of fruits, vegetables and beverages in the Inter99 cohort study using the method of triads. Br J Nutr 2012;108:1904–12.
    1. Clauss A. [Rapid physiological coagulation method in determination of fibrinogen.] Acta Haematol 1957;17:237–46 (in German).
    1. Sakakeeny L, Roubenoff R, Obin M, Fontes JD, Benjamin EJ, Bujanover Y, Jacques PF, Selhub J. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr 2012;142:1280–5.
    1. Kannel WB, Wolf PA, Garrison RJ. Some risk factors related to the annual incidence of cardiovascular disease and death in pooled repeated biennial measurements. Framingham Heart Study, 30 year follow-up. Bethesda (MD): US Department of Health and Human Services; 1987.
    1. Kannel WB, Sorlie P. Some health benefits of physical activity. The Framingham Study. Arch Intern Med 1979;139:857–61.
    1. Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, Li D, Zhang Y, Li G, Xiao Y, et al. . Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis 2013;23:843–9.
    1. Edirisinghe I, Banaszewski K, Cappozzo J, Sandhya K, Ellis CL, Tadapaneni R, Kappagoda CT, Burton-Freeman BM. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br J Nutr 2011;106:913–22.
    1. Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab 2013;63:256–64.
    1. Basu A, Wilkinson M, Penugonda K, Simmons B, Betts NM, Lyons TJ. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects. Nutr J 2009;8:43.
    1. Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 2010;140:1582–7.
    1. Basu A, Betts NM, Nguyen A, Newman ED, Fu D, Lyons TJ. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J Nutr 2014;144:830–7.
    1. Karlsen A, Paur I, Bohn SK, Sakhi AK, Borge GI, Serafini M, Erlund I, Laake P, Tonstad S, Blomhoff R. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 2010;49:345–55.
    1. Kolehmainen M, Mykkanen O, Kirjavainen PV, Leppanen T, Moilanen E, Adriaens M, Laaksonen DE, Hallikainen M, Puupponen-Pimia R, Pulkkinen L, et al. . Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res 2012;56:1501–10.
    1. Karlsen A, Retterstol L, Laake P, Paur I, Bohn SK, Sandvik L, Blomhoff R. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 2007;137:1951–4.
    1. Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, Lee JH, Chang KC, Kim HJ. Anthocyanins from black soybean seed coats preferentially inhibit TNF-alpha-mediated induction of VCAM-1 over ICAM-1 through the regulation of GATAs and IRF-1. J Agric Food Chem 2009;57:7324–30.
    1. Kim HJ, Tsoy I, Park JM, Chung JI, Shin SC, Chang KC. Anthocyanins from soybean seed coat inhibit the expression of TNF-alpha-induced genes associated with ischemia/reperfusion in endothelial cell by NF-kappaB-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett 2006;580:1391–7.
    1. DeFuria J, Bennett G, Strissel KJ, Perfield JW 2nd, Milbury PE, Greenberg AS, Obin MS. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 2009;139:1510–6.
    1. Benn T, Kim B, Park YK, Wegner CJ, Harness E, Nam TG, Kim DO, Lee JS, Lee JY. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 2014;25:1019–25.
    1. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr 2013;97:995–1003.
    1. Lodén M, Perris F, Nielsen NH, Emdin SO, Landberg G. C-erbB2, p27 and G1/S aberrations in human primary breast cancer. Anticancer Res 2003;23:2053–61.
    1. Min SW, Ryu SN, Kim DH. Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol 2010;10:959–66.
    1. Hidalgo M, Martin-Santamaria S, Recio I, Sanchez-Moreno C, de Pascual-Teresa B, Rimbach G, de Pascual-Teresa S. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr 2012;7:295–306.
    1. Wang D, Wei X, Yan X, Jin T, Ling W. Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 2010;58:12722–8.
    1. Kim MC, Kim SJ, Kim DS, Jeon YD, Park SJ, Lee HS, Um JY, Hong SH. Vanillic acid inhibits inflammatory mediators by suppressing NF-kappaB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol Immunotoxicol 2011;33:525–32.
    1. Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, et al. . Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014;144:146–54.
    1. Loke WM, Proudfoot JM, Stewart S, McKinley AJ, Needs PW, Kroon PA, Hodgson JM, Croft KD. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem Pharmacol 2008;75:1045–53.
    1. Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012;95:740–51.

Source: PubMed

3
Abonnere