Effect of Magnesium Supplementation on Circulating Biomarkers of Cardiovascular Disease

Alvaro Alonso, Lin Y Chen, Kyle D Rudser, Faye L Norby, Mary R Rooney, Pamela L Lutsey, Alvaro Alonso, Lin Y Chen, Kyle D Rudser, Faye L Norby, Mary R Rooney, Pamela L Lutsey

Abstract

(1) Background: Magnesium supplementation may be effective for the prevention of cardiometabolic diseases, but the mechanisms are unclear. Proteomic approaches can assist in identifying the underlying mechanisms. (2) Methods: We collected repeated blood samples from 52 individuals enrolled in a double-blind trial which randomized participants 1:1 to oral magnesium supplementation (400 mg magnesium/day in the form of magnesium oxide) or a matching placebo for 10 weeks. Plasma levels of 91 proteins were measured at baseline with follow-up samples using the Olink Cardiovascular Disease III proximity extension assay panel and were modeled as arbitrary units in a log2 scale. We evaluated the effect of oral magnesium supplementation for changes in protein levels and the baseline association between serum magnesium and protein levels. The Holm procedure was used to adjust for multiple comparisons. (3) Results: Participants were 73% women, 94% white, and had a mean age of 62. Changes in proteins did not significantly differ between the two intervention groups after correction for multiple comparisons. The most statistically significant effects were on myoglobin [difference -0.319 log2 units, 95% confidence interval (CI) (-0.550, -0.088), p = 0.008], tartrate-resistant acid phosphatase type 5 (-0.187, (-0.328, -0.045), p = 0.011), tumor necrosis factor ligand superfamily member 13B (-0.181, (-0.332, -0.031), p = 0.019), ST2 protein (-0.198, (-0.363, -0.032), p = 0.020), and interleukin-1 receptor type 1 (-0.144, (-0.273, -0.015), p = 0.029). Similarly, none of the associations of baseline serum magnesium with protein levels were significant after correction for multiple comparisons. (4) Conclusions: Although we did not identify statistically significant effects of oral magnesium supplementation in this relatively small study, this study demonstrates the value of proteomic approaches for the investigation of mechanisms underlying the beneficial effects of magnesium supplementation. Clinical Trials Registration: ClinicalTrials.gov NCT02837328.

Keywords: magnesium; proteomics; randomized trial.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Participant flow diagram.
Figure 2
Figure 2
Pairwise correlations between baseline levels of individual proteins.
Figure 3
Figure 3
Mean difference in 12-week change of individual protein levels in Normalized Protein eXpression (NPX) units comparing oral magnesium supplementation to placebo. Error bars correspond to 95% confidence. Green bars indicate differences with p <0.05, yellow bars with p-value ≥0.05 and <0.10.
Figure 4
Figure 4
Baseline association of serum magnesium with individual protein levels in Normalized Protein eXpression (NPX) units. Coefficients correspond to the difference in protein levels per 0.04 mmol/L difference in serum magnesium. Error bars correspond to 95% confidence intervals. Green bars indicate differences with p <0.05, yellow bars with p-value ≥0.05 and <0.10.

References

    1. Del Gobbo L.C., Imamura F., Wu J.H., De Oliveira Otto M.C., Chiuve S.E., Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013;98:160–173. doi: 10.3945/ajcn.112.053132.
    1. Misialek J.R., Lopez F.L., Lutsey P.L., Huxley R.R., Peacock J.M., Chen L.Y., Soliman E.Z., Agarwal S.K., Alonso A. Serum and dietary magnesium and incidence of atrial fibrillation in whites and in African Americans--Atherosclerosis Risk in Communities (ARIC) Study. Circ. J. 2013;77:323–329. doi: 10.1253/circj.CJ-12-0886.
    1. Larsson S.C., Burgess S., Michaëlsson K. Serum magnesium levels and risk of coronary artery disease: Medelian randomisation study. BMC Med. 2018;16:68. doi: 10.1186/s12916-018-1065-z.
    1. Larsson S.C., Drca N., Michaëlsson K. Serum magnesium and calcium levels and risk of atrial fibrillation. Circ. Genom Precis Med. 2019;12:e002349. doi: 10.1161/CIRCGEN.118.002349.
    1. Arsenault K.A., Yusuf A.M., Crystal E., Healey J.S., Morillo C.A., Nair G.M., Whitlock R.P. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst. Rev. 2013:CD003611. doi: 10.1002/14651858.CD003611.pub3.
    1. Veronese N., Demurtas J., Pesolillo G., Celotto S., Barnini T., Calusi G., Caruso M.G., Notarnicola M., Reddavide R., Stubbs R., et al. Magnesium and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur. J. Nutr. 2020;59:263–272. doi: 10.1007/s00394-019-01905-w.
    1. Nielsen F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018;11:25–34. doi: 10.2147/JIR.S136742.
    1. Morais J.B., Severo J.S., Santos L.R., De Sousa Melo S.R., De Oliveira Santos R., De Oliveira A.R., Cruz K.J., Do Nascimento Marreiro D. Role of magnesium in oxidative stress in individuals with obesity. Biol. Trace Elem. Res. 2017;176:20–26. doi: 10.1007/s12011-016-0793-1.
    1. Barbagallo M., Dominguez L.J., Galioto A., Pineo A., Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes. Res. 2010;23:131–137.
    1. Lindsey M.L., Mayr M., Gomes A.V., Delles C., Arrell D.K., Murphy A.M., Lange R.A., Costello C.E., Jin Y.F., Laskowitz D.T., et al. Transformative impact of proteomics on cardiovascular health and disease: A scientific statement from the American Heart Association. Circulation. 2015;132:852–872. doi: 10.1161/CIR.0000000000000226.
    1. Chacko S.A., Sul J., Song Y., Li X., LeBlanc J., You Y., Butch A., Liu S. Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: A randomized, double-blind, controlled, crossover trial in overweight individuals. Am. J. Clin. Nutr. 2011;93:463–473. doi: 10.3945/ajcn.110.002949.
    1. Lutsey P.L., Chen L.Y., Eaton A., Jaeb M., Rudser K.D., Neaton J.D., Alonso A. A pilot randomized trial of oral magnesium supplementation on supraventricular arrhythmias. Nutrients. 2018;10:884. doi: 10.3390/nu10070884.
    1. Assarsson E., Lundberg M., Holmquist G., Björkesten J., Bucht Thorsen S., Ekman D., Eriksson A., Rennel Dickens E., Ohlsson S., Edfeldt G., et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9:e95192. doi: 10.1371/journal.pone.0095192.
    1. Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 1979;6:65–70.
    1. Salaminia S., Sayehmiri F., Angha P., Sayehmiri K., Motedayen M. Evaluating the effect of magnesium supplementation and cardiac arrhythmias after acture coronary syndrome: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2018;18:129. doi: 10.1186/s12872-018-0857-6.
    1. Joris P.J., Plat J., Bakker S.J., Mensink R.P. Effects of long-term magnesium supplementation on endothelial function and cardiometabolic risk markers: A randomized controlled trial in overweight/obese adults. Sci. Rep. 2017;7:106. doi: 10.1038/s41598-017-00205-9.
    1. Ordway G.A., Garry D.J. Myoglobin: An essential hemoprotein in striated muscle. J. Exp. Biol. 2004;207:3441–3446. doi: 10.1242/jeb.01172.
    1. Schneider P., MacKay F., Steiner V., Hofmann K., Bodmer J.L., Holler N., Ambrose C., Lawton P., Bixler S., Acha-Orbea H., et al. BAFF, a novel ligand of the tumor necrosis family, stimulates B cell growth. J. Exp. Med. 1999;189:1747–1756. doi: 10.1084/jem.189.11.1747.
    1. Schmitz J., Owyang A., Oldham E., Song Y., Murphy E., McClanahan T.K., Zurawski G., Moshrefi M., Qin J., Li X., et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–490. doi: 10.1016/j.immuni.2005.09.015.
    1. Tominaga K., Yoshimoto T., Torigoe K., Kurimoto M., Matsui K., Hada T., Okamura H., Nakanishi K. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int. Immunol. 2000;12:151–160. doi: 10.1093/intimm/12.2.151.
    1. Halleen J.M., Ylipahkala H., Alatalo S.L., Janckila A.J., Heikkinen J.E., Suominen H., Cheng S., Väänänen H.K. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif. Tissue Int. 2002;71:20–25. doi: 10.1007/s00223-001-2122-7.
    1. Pascual-Figal D.A., Januzzi J.L. The biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015;115:3B–7B. doi: 10.1016/j.amjcard.2015.01.034.
    1. Seshacharyulu P., Ponnusamy M.P., Haridas D., Jain M., Ganti A.K., Batra S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert. Opin. Ther. Targets. 2012;16:15–31. doi: 10.1517/14728222.2011.648617.
    1. Steinbacher T., Kummer D., Ebnet K. Junctional adhesion molecule-A: Functional diversity through molecular promiscuity. Cell Mol. Life Sci. 2018;75:1393–1409. doi: 10.1007/s00018-017-2729-0.
    1. Lertkiatmongkol P., Liao D., Mei H., Hu Y., Newman P.J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31) Curr. Opin. Hematol. 2016;23:253–259. doi: 10.1097/MOH.0000000000000239.
    1. Précourt L.P., Amre D., Denis M.C., Lavoie J.C., Delvin E., Seidman E., Levy E. The three-gene paraoxonase family: Physiologic roles, actions and regulation. Atherosclerosis. 2011;214 doi: 10.1016/j.atherosclerosis.2010.08.076.
    1. Zhang X., Del Gobbo L.C., Hruby A., Rosanoff A., He K., Dai Q., Costello R.B., Zhang W., Song Y. The circulating concentration and 24-h urine excretion of magnesium dose- and time-dependently respond to oral magnesium supplementation in a meta-analysis of randomized controlled trials. J. Nutr. 2016;146:595–602. doi: 10.3945/jn.115.223453.

Source: PubMed

3
Abonnere