Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation

Roger Paredes, Philip L Tzou, Gert van Zyl, Geoff Barrow, Ricardo Camacho, Sergio Carmona, Philip M Grant, Ravindra K Gupta, Raph L Hamers, P Richard Harrigan, Michael R Jordan, Rami Kantor, David A Katzenstein, Daniel R Kuritzkes, Frank Maldarelli, Dan Otelea, Carole L Wallis, Jonathan M Schapiro, Robert W Shafer, Roger Paredes, Philip L Tzou, Gert van Zyl, Geoff Barrow, Ricardo Camacho, Sergio Carmona, Philip M Grant, Ravindra K Gupta, Raph L Hamers, P Richard Harrigan, Michael R Jordan, Rami Kantor, David A Katzenstein, Daniel R Kuritzkes, Frank Maldarelli, Dan Otelea, Carole L Wallis, Jonathan M Schapiro, Robert W Shafer

Abstract

Introduction: HIV-1 genotypic resistance test (GRT) interpretation systems (IS) require updates as new studies on HIV-1 drug resistance are published and as treatment guidelines evolve.

Methods: An expert panel was created to provide recommendations for the update of the Stanford HIV Drug Resistance Database (HIVDB) GRT-IS. The panel was polled on the ARVs to be included in a GRT report, and the drug-resistance interpretations associated with 160 drug-resistance mutation (DRM) pattern-ARV combinations. The DRM pattern-ARV combinations included 52 nucleoside RT inhibitor (NRTI) DRM pattern-ARV combinations (13 patterns x 4 NRTIs), 27 nonnucleoside RT inhibitor (NNRTI) DRM pattern-ARV combinations (9 patterns x 3 NNRTIs), 39 protease inhibitor (PI) DRM pattern-ARV combinations (13 patterns x 3 PIs) and 42 integrase strand transfer inhibitor (INSTI) DRM pattern-ARV combinations (14 patterns x 3 INSTIs).

Results: There was universal agreement that a GRT report should include the NRTIs lamivudine, abacavir, zidovudine, emtricitabine, and tenofovir disoproxil fumarate; the NNRTIs efavirenz, etravirine, nevirapine, and rilpivirine; the PIs atazanavir/r, darunavir/r, and lopinavir/r (with "/r" indicating pharmacological boosting with ritonavir or cobicistat); and the INSTIs dolutegravir, elvitegravir, and raltegravir. There was a range of opinion as to whether the NRTIs stavudine and didanosine and the PIs nelfinavir, indinavir/r, saquinavir/r, fosamprenavir/r, and tipranavir/r should be included. The expert panel members provided highly concordant DRM pattern-ARV interpretations with only 6% of NRTI, 6% of NNRTI, 5% of PI, and 3% of INSTI individual expert interpretations differing from the expert panel median by more than one resistance level. The expert panel median differed from the HIVDB 7.0 GRT-IS for 20 (12.5%) of the 160 DRM pattern-ARV combinations including 12 NRTI, two NNRTI, and six INSTI pattern-ARV combinations. Eighteen of these differences were updated in HIVDB 8.1 GRT-IS to reflect the expert panel median. Additionally, HIVDB users are now provided with the option to exclude those ARVs not considered to be universally required.

Conclusions: The HIVDB GRT-IS was updated through a collaborative process to reflect changes in HIV drug resistance knowledge, treatment guidelines, and expert opinion. Such a process broadens consensus among experts and identifies areas requiring further study.

Conflict of interest statement

Competing Interests: RW Shafer has received research funding during the past two years from Gilead Sciences, Bristol Myers Squibb, Merck Pharmaceuticals and has received consulting fees from ViiV Health Care. PR Harrigan has received grants from, served as an ad hoc advisor to, or spoke at various events sponsored by Abbott, Merck, and Gilead. He has also served as a consultant for ViiV Health Care, and Gilead. DRK has received consulting fees and research support from Gilead, Janssen, Merck and ViiV. JMS has received research support, honorarium or consulting fees from the following: Abbvie, Merck, Gilead Sciences, GlaxoSmithKline, Tibotec-Janssen, BMS, Teva, Virology Education and ViiV Healthcare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Expert panel assessments of 14…
Fig 1. Expert panel assessments of 14 NRTI-associated drug-resistance mutation (DRM) patterns.
Abbreviations: ABC (abacavir), AZT (zidovudine), TDF (tenofovir), 3FTC (lamivudine and emtricitabine), S (susceptible), P (potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.
Fig 2. Expert panel assessments of 9…
Fig 2. Expert panel assessments of 9 NNRTI-associated drug-resistance mutation (DRM) patterns.
Abbreviations: EFV (efavirenz), ETR (etravirine), RPV (riplivirine), S (susceptible), P (potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.
Fig 3. Expert panel assessments of 13…
Fig 3. Expert panel assessments of 13 PI-associated drug-resistance mutation (DRM) patterns.
Abbreviations: ATV (boosted atazanavir), DRV (boosted darunavir), LPV (boosted lopinavir), S (susceptible), P (potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.
Fig 4. Expert panel assessments of 14…
Fig 4. Expert panel assessments of 14 INSTI-associated drug-resistance mutation (DRM) patterns.
Abbreviations: DTG (dolutegravir), EVG (elvitegravir), raltegravir (RAL), S (susceptible), P (potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.

References

    1. Vandamme AM, Camacho RJ, Ceccherini-Silberstein F, de Luca A, Palmisano L, Paraskevis D, et al. European recommendations for the clinical use of HIV drug resistance testing: 2011 update. AIDS reviews. 2011;13(2):77–108. .
    1. Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2006;42(11):1608–18. doi: ; PubMed Central PMCID: PMCPMC2547473.
    1. Tang MW, Liu TF, Shafer RW. The HIVdb system for HIV-1 genotypic resistance interpretation. Intervirology. 2012;55(2):98–101. doi: .
    1. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrobial agents and chemotherapy. 2000;44(4):920–8. Epub 2000/03/18. ; PubMed Central PMCID: PMC89793.
    1. Monogram Biosciences. PhenoSense HIV Drug Resistance Assay Report Template (last accessed May 18, 2017). . 2017.
    1. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrobial agents and chemotherapy. 2011;55(2):813–21. Epub 2010/12/01. doi: ; PubMed Central PMCID: PMC3028777.
    1. Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrobial agents and chemotherapy. 2004;48(2):437–43. Epub 2004/01/27. PubMed Central PMCID: PMC321508. doi:
    1. Kempf DJ, Isaacson JD, King MS, Brun SC, Sylte J, Richards B, et al. Analysis of the virological response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir therapy. Antivir Ther. 2002;7(3):165–74. Epub 2002/12/19. .
    1. Naeger LK, Struble KA. Effect of baseline protease genotype and phenotype on HIV response to atazanavir/ritonavir in treatment-experienced patients. AIDS. 2006;20(6):847–53. doi: .
    1. Winters B, Montaner J, Harrigan PR, Gazzard B, Pozniak A, Miller MD, et al. Determination of clinically relevant cutoffs for HIV-1 phenotypic resistance estimates through a combined analysis of clinical trial and cohort data. J Acquir Immune Defic Syndr. 2008;48(1):26–34. doi: .
    1. Picchio G, Vingerhoets J, Tambuyzer L, Coakley E, Haddad M, Witek J. Short communication prevalence of susceptibility to etravirine by genotype and phenotype in samples received for routine HIV type 1 resistance testing in the United States. AIDS research and human retroviruses. 2011;27(12):1271–5. doi: .
    1. FDA. Tivicay (dolutegravir) prescribing information. . 2015.
    1. Monogram Biosciences. PhenoSense Integrase template report. . 2017.
    1. FDA. Prezista (Darunavir) Prescribing Information. . 2016.
    1. Rhee SY, Varghese V, Holmes SP, Van Zyl GU, Steegen K, Boyd MA, et al. Mutational Correlates of Virological Failure in Individuals Receiving a WHO-Recommended Tenofovir-Containing First-Line Regimen: An International Collaboration. EBioMedicine. 2017;18:225–35. doi: ; PubMed Central PMCID: PMCPMC5405160.
    1. Puchhammer-Stockl E, Steininger C, Geringer E, Heinz FX. Comparison of virtual phenotype and HIV-SEQ program (Stanford) interpretation for predicting drug resistance of HIV strains. HIV medicine. 2002;3(3):200–6. .
    1. Torti C, Quiros-Roldan E, Keulen W, Scudeller L, Lo Caputo S, Boucher C, et al. Comparison between rules-based human immunodeficiency virus type 1 genotype interpretations and real or virtual phenotype: concordance analysis and correlation with clinical outcome in heavily treated patients. The Journal of infectious diseases. 2003;188(2):194–201. doi: .
    1. Gallego O, Martin-Carbonero L, Aguero J, de Mendoza C, Corral A, Soriano V. Correlation between rules-based interpretation and virtual phenotype interpretation of HIV-1 genotypes for predicting drug resistance in HIV-infected individuals. Journal of virological methods. 2004;121(1):115–8. doi: .
    1. Beerenwinkel N, Daumer M, Oette M, Korn K, Hoffmann D, Kaiser R, et al. Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res. 2003;31(13):3850–5. ; PubMed Central PMCID: PMCPMC168981.
    1. Vermeiren H, Van Craenenbroeck E, Alen P, Bacheler L, Picchio G, Lecocq P. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. Journal of virological methods. 2007;145(1):47–55. Epub 2007/06/19. doi: .
    1. Jiamsakul A, Kantor R, Li PC, Sirivichayakul S, Sirisanthana T, Kantipong P, et al. Comparison of predicted susceptibility between genotype and virtual phenotype HIV drug resistance interpretation systems among treatment-naive HIV-infected patients in Asia: TASER-M cohort analysis. BMC Res Notes. 2012;5:582 doi: ; PubMed Central PMCID: PMCPMC3505153.
    1. Zazzi M, Incardona F, Rosen-Zvi M, Prosperi M, Lengauer T, Altmann A, et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology. 2012;55(2):123–7. doi: .
    1. Altmann A, Daumer M, Beerenwinkel N, Peres Y, Schulter E, Buch J, et al. Predicting the response to combination antiretroviral therapy: retrospective validation of geno2pheno-THEO on a large clinical database. The Journal of infectious diseases. 2009;199(7):999–1006. doi: .
    1. Revell AD, Wang D, Boyd MA, Emery S, Pozniak AL, De Wolf F, et al. The development of an expert system to predict virological response to HIV therapy as part of an online treatment support tool. AIDS. 2011;25(15):1855–63. doi: .
    1. Larder B, Wang D, Revell A, Montaner J, Harrigan R, De Wolf F, et al. The development of artificial neural networks to predict virological response to combination HIV therapy. Antivir Ther. 2007;12(1):15–24. .
    1. Rhee SY, Fessel WJ, Liu TF, Marlowe NM, Rowland CM, Rode RA, et al. Predictive value of HIV-1 genotypic resistance test interpretation algorithms. The Journal of infectious diseases. 2009;200(3):453–63. doi: ; PubMed Central PMCID: PMCPMC4774893.
    1. Frentz D, Boucher CA, Assel M, De Luca A, Fabbiani M, Incardona F, et al. Comparison of HIV-1 genotypic resistance test interpretation systems in predicting virological outcomes over time. PloS one. 2010;5(7):e11505 doi: ; PubMed Central PMCID: PMCPMC2901338.
    1. Vercauteren J, Beheydt G, Prosperi M, Libin P, Imbrechts S, Camacho R, et al. Clinical evaluation of Rega 8: an updated genotypic interpretation system that significantly predicts HIV-therapy response. PloS one. 2013;8(4):e61436 doi: ; PubMed Central PMCID: PMCPMC3629176.
    1. Sturmer M, Doerr HW, Staszewski S, Preiser W. Comparison of nine resistance interpretation systems for HIV-1 genotyping. Antivir Ther. 2003;8(3):239–44. .
    1. Poonpiriya V, Sungkanuparph S, Leechanachai P, Pasomsub E, Watitpun C, Chunhakan S, et al. A study of seven rule-based algorithms for the interpretation of HIV-1 genotypic resistance data in Thailand. Journal of virological methods. 2008;151(1):79–86. doi: .
    1. Vercauteren J, Vandamme AM. Algorithms for the interpretation of HIV-1 genotypic drug resistance information. Antiviral research. 2006;71(2–3):335–42. doi: .
    1. Margot NA, Liu Y, Miller MD, Callebaut C. High resistance barrier to tenofovir alafenamide is driven by higher loading of tenofovir diphosphate into target cells compared to tenofovir disoproxil fumarate. Antiviral research. 2016;132:50–8. doi: .
    1. Margot NA, Johnson A, Miller MD, Callebaut C. Characterization of HIV-1 Resistance to Tenofovir Alafenamide In Vitro. Antimicrobial agents and chemotherapy. 2015;59(10):5917–24. doi: ; PubMed Central PMCID: PMCPMC4576099.
    1. US Department of Health and Human Services Panel on Clinical Practices for Treatment of HIV Infection A. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents (July 2016), . 2016.
    1. TenoRes Study G. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. The Lancet infectious diseases. 2016. doi: ; PubMed Central PMCID: PMCPMC4835583.
    1. Whitcomb JM, Parkin NT, Chappey C, Hellmann NS, Petropoulos CJ. Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. The Journal of infectious diseases. 2003;188(7):992–1000. Epub 2003/09/27. doi: .
    1. Melikian GL, Rhee SY, Taylor J, Fessel WJ, Kaufman D, Towner W, et al. Standardized comparison of the relative impacts of HIV-1 reverse transcriptase (RT) mutations on nucleoside RT inhibitor susceptibility. Antimicrobial agents and chemotherapy. 2012;56(5):2305–13. Epub 2012/02/15. doi: ; PubMed Central PMCID: PMC3346663.
    1. Miller MD, Margot N, Lu B, Zhong L, Chen SS, Cheng A, et al. Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients. The Journal of infectious diseases. 2004;189(5):837–46. Epub 2004/02/21. doi: .
    1. Margot NA, Wong P, Kulkarni R, White K, Porter D, Abram ME, et al. Commonly Transmitted HIV-1 Drug Resistance Mutations in Reverse-Transcriptase and Protease in Antiretroviral Treatment-Naive Patients and Response to Regimens Containing Tenofovir Disoproxil Fumarate or Tenofovir Alafenamide. The Journal of infectious diseases. 2017;215(6):920–7. doi: .
    1. Saag MS, Sonnerborg A, Torres RA, Lancaster D, Gazzard BG, Schooley RT, et al. Antiretroviral effect and safety of abacavir alone and in combination with zidovudine in HIV-infected adults. AIDS. 1998;12:F203–F9.
    1. Louie M, Hogan C, Hurley A, Simon V, Chung C, Padte N, et al. Determining the antiviral activity of tenofovir disoproxil fumarate in treatment-naive chronically HIV-1-infected individuals. AIDS. 2003;17(8):1151–6. doi: .
    1. Sax PE, Tierney C, Collier AC, Fischl MA, Mollan K, Peeples L, et al. Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy. N Engl J Med. 2009;361(23):2230–40. doi: ; PubMed Central PMCID: PMCPMC2800041.
    1. Rimsky L, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J Acquir Immune Defic Syndr. 2012;59(1):39–46. Epub 2011/11/10. doi: .
    1. Antinori A, Zaccarelli M, Cingolani A, Forbici F, Rizzo MG, Trotta MP, et al. Cross-resistance among nonnucleoside reverse transcriptase inhibitors limits recycling efavirenz after nevirapine failure. AIDS research and human retroviruses. 2002;18(12):835–8. doi: .
    1. Walmsley SL, Kelly DV, Tseng AL, Humar A, Harrigan PR. Non-nucleoside reverse transcriptase inhibitor failure impairs HIV-RNA responses to efavirenz-containing salvage antiretroviral therapy. AIDS. 2001;15(12):1581–4. .
    1. Shulman NS, Zolopa AR, Passaro DJ, Murlidharan U, Israelski DM, Brosgart CL, et al. Efavirenz- and adefovir dipivoxil-based salvage therapy in highly treatment-experienced patients: clinical and genotypic predictors of virologic response. J Acquir Immune Defic Syndr. 2000;23(3):221–6. .
    1. Mackie NE, Dunn DT, Dolling D, Garvey L, Harrison L, Fearnhill E, et al. The impact of HIV-1 reverse transcriptase polymorphisms on responses to first-line nonnucleoside reverse transcriptase inhibitor-based therapy in HIV-1-infected adults. AIDS. 2013;27(14):2245–53. doi: .
    1. King MS, Rode R, Cohen-Codar I, Calvez V, Marcelin AG, Hanna GJ, et al. Predictive genotypic algorithm for virologic response to lopinavir-ritonavir in protease inhibitor-experienced patients. Antimicrobial agents and chemotherapy. 2007;51(9):3067–74. Epub 2007/06/20. doi: ; PubMed Central PMCID: PMC2043245.
    1. De Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R, et al. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrobial agents and chemotherapy. 2005;49(6):2314–21. Epub 2005/05/27. doi: ; PubMed Central PMCID: PMC1140553.
    1. de Meyer S, Vangeneugden T, van Baelen B, de Paepe E, van Marck H, Picchio G, et al. Resistance profile of darunavir: combined 24-week results from the POWER trials. AIDS research and human retroviruses. 2008;24(3):379–88. Epub 2008/03/11. doi: .
    1. Kempf DJ, Isaacson JD, King MS, Brun SC, Xu Y, Real K, et al. Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol. 2001;75(16):7462–9. Epub 2001/07/20. doi: ; PubMed Central PMCID: PMC114981.
    1. Rhee SY, Taylor J, Fessel WJ, Kaufman D, Towner W, Troia P, et al. HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrobial agents and chemotherapy. 2010;54(10):4253–61. Epub 2010/07/28. doi: ; PubMed Central PMCID: PMC2944562.
    1. Naeger LK, Struble KA. Food and Drug Administration analysis of tipranavir clinical resistance in HIV-1-infected treatment-experienced patients. AIDS. 2007;21(2):179–85. Epub 2007/01/02. doi: .
    1. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrobial agents and chemotherapy. 2008;52(4):1351–8. doi: ; PubMed Central PMCID: PMCPMC2292515.
    1. Molina JM, Lamarca A, Andrade-Villanueva J, Clotet B, Clumeck N, Liu YP, et al. Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: randomised, double-blind, phase 3, non-inferiority study. The Lancet infectious diseases. 2012;12(1):27–35. Epub 2011/10/22. doi: .
    1. Eron JJ, Clotet B, Durant J, Katlama C, Kumar P, Lazzarin A, et al. Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study. The Journal of infectious diseases. 2013;207(5):740–8. Epub 2012/12/12. doi: ; PubMed Central PMCID: PMC3563307.
    1. Danion F, Belissa E, Peytavin G, Thierry E, Lanternier F, Scemla A, et al. Non-virological response to a dolutegravir-containing regimen in a patient harbouring a E157Q-mutated virus in the integrase region. The Journal of antimicrobial chemotherapy. 2015;70(6):1921–3. doi: .
    1. Rhee SY, Sankaran K, Varghese V, Winters M, Hurt CB, Eron JJ, et al. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation. J Virol. 2016. doi: .
    1. Fransen S, Gupta S, Frantzell A, Petropoulos CJ, Huang W. Substitutions at amino acid positions 143, 148, and 155 of HIV-1 integrase define distinct genetic barriers to raltegravir resistance in vivo. J Virol. 2012;86(13):7249–55. Epub 2012/05/04. doi: ; PubMed Central PMCID: PMC3416338.
    1. Abram ME, Ram RR, Margot NA, Barnes TL, White KL, Callebaut C, et al. Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome. PloS one. 2017;12(2):e0172206 doi: ; PubMed Central PMCID: PMCPMC5315389.
    1. Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, et al. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol. 2012;86(5):2696–705. Epub 2011/12/30. doi: ; PubMed Central PMCID: PMC3302270.
    1. Mesplede T, Quashie PK, Osman N, Han Y, Singhroy DN, Lie Y, et al. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology. 2013;10(1):22 Epub 2013/02/26. doi: .
    1. Cahn P, Pozniak AL, Mingrone H, Shuldyakov A, Brites C, Andrade-Villanueva JF, et al. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet. 2013;382(9893):700–8. doi: .
    1. Lepik KJ, Harrigan PR, Yip B, Wang L, Robbins MA, Zhang WW, et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens: Incidence and risk factors. AIDS. 2017. doi: .
    1. Blanco JL, Oldenbuettel C, Thomas R, Mallolas J, Wolf E, Brenner B, et al. Pathways of resistance in subjects failing dolutegravir monotherapy (abstract 42). 2017 Conference on Retroviruses and Opportunistic Infections, Seattle WA, USA, Feb 13–16, 2017. 2017.
    1. Anstett K, Mesplede T, Oliveira M, Cutillas V, Wainberg MA. Dolutegravir resistance mutation R263K cannot coexist in combination with many classical integrase inhibitor resistance substitutions. J Virol. 2015;89(8):4681–4. doi: ; PubMed Central PMCID: PMCPMC4442391.
    1. Brenner BG, Thomas R, Blanco JL, Ibanescu RI, Oliveira M, Mesplede T, et al. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. The Journal of antimicrobial chemotherapy. 2016. doi: .
    1. Quashie PK, Mesplede T, Han YS, Veres T, Osman N, Hassounah S, et al. Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrobial agents and chemotherapy. 2013;57(12):6223–35. doi: ; PubMed Central PMCID: PMCPMC3837891.
    1. Quashie PK, Oliviera M, Veres T, Osman N, Han YS, Hassounah S, et al. Differential effects of the G118R, H51Y, and E138K resistance substitutions in different subtypes of HIV integrase. J Virol. 2015;89(6):3163–75. doi: ; PubMed Central PMCID: PMCPMC4337543.
    1. Malet I, Gimferrer Arriaga L, Artese A, Costa G, Parrotta L, Alcaro S, et al. New raltegravir resistance pathways induce broad cross-resistance to all currently used integrase inhibitors. The Journal of antimicrobial chemotherapy. 2014;69(8):2118–22. doi: .
    1. Munir S, Thierry E, Malet I, Subra F, Calvez V, Marcelin AG, et al. G118R and F121Y mutations identified in patients failing raltegravir treatment confer dolutegravir resistance. The Journal of antimicrobial chemotherapy. 2015;70(3):739–49. doi: .
    1. Underwood MR, Johns BA, Sato A, Martin JN, Deeks SG, Fujiwara T. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J Acquir Immune Defic Syndr. 2012;61(3):297–301. Epub 2012/08/11. doi: .
    1. Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, et al. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. The Journal of infectious diseases. 2011;204(11):1811–5. Epub 2011/10/11. doi: .
    1. World Health Organization HIV/AIDS Programme. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. 2013.
    1. Lanier ER, Ait-Khaled M, Scott J, Stone C, Melby T, Sturge G, et al. Antiviral efficacy of abacavir in antiretroviral therapy-experienced adults harbouring HIV-1 with specific patterns of resistance to nucleoside reverse transcriptase inhibitors. Antivir Ther. 2004;9(1):37–45. .
    1. Vingerhoets J, Tambuyzer L, Azijn H, Hoogstoel A, Nijs S, Peeters M, et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled Phase III clinical studies. AIDS. 2010;24(4):503–14. Epub 2010/01/07. doi: .

Source: PubMed

3
Abonnere