Therapeutic potential of curcumin in eye diseases

Dorota M Radomska-Leśniewska, Anna Osiecka-Iwan, Anna Hyc, Agata Góźdź, Anna M Dąbrowska, Piotr Skopiński, Dorota M Radomska-Leśniewska, Anna Osiecka-Iwan, Anna Hyc, Agata Góźdź, Anna M Dąbrowska, Piotr Skopiński

Abstract

Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.

Keywords: age-related macular degeneration (AMD); angiogenesis; cataract; conjunctivitis; curcumin; diabetic retinopathy; eye disease; glaucoma; reactive oxygen species (ROS).

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des. 2013;19:2032–2046.
    1. Ammon H, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.
    1. Tilak JC, Banerjee M, Mohan H, Devasagayam TP. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother Res. 2004;18:798–804.
    1. Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected] J Biol Chem. 1995;270:24995–25000.
    1. Schaffer M, Schaffer PM, Zidan J, Bar Sela G. Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care. 2011;14:588–597.
    1. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41:40–59.
    1. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Cur cuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14:141–153.
    1. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumIn: problems and promises. Mol Pharm. 2007;4:807–818.
    1. Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod. 2007;70:143–146.
    1. Ohori H, Yamakoshi H, Tomizawa M, et al. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther. 2006;5:2563–2571.
    1. Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–2900.
    1. Hewlings SJ, Kalman DS. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017;6:92.
    1. Devasagayam TPA, Tilak JC, Boloor KK, et al. Free radicals and antioxidant in human health: current status and future prospects. JAPI. 2006;52:794–804.
    1. Manea A. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res. 2010;342:325–339.
    1. Radomska-Leśniewska DM, Hevelke A, Skopiński P, et al. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators. Pharmacol Rep. 2016;68:462–471.
    1. Brambilla D, Mancuso C, Scuderi MR, et al. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J. 2008;30:7–29.
    1. Halliwell B. Antioxidant defense mechanisms: from the beginning to the end (of the beginning) Free Radic Res. 1999;31:261–272.
    1. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.
    1. Kim Y-W, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123:625–631.
    1. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–125.
    1. Lin YG, Kunnumakkara AB, Nair A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res. 2007;13:3423–3430.
    1. Marchiani A, Rozzo C, Fadda A, et al. Curcumin and curcumin-like molecules: From spice to drugs. Curr Med Chem. 2014;21:204–222.
    1. Priyadarsini KI, Maity DK, Naik GH. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 2003;35:475–484.
    1. Piwocka K, Jaruga E, Skierski J, et al. Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic Biol Med. 2001;31:670–678.
    1. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 2000;28:1303–1312.
    1. Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10:1767–1812.
    1. Panahi Y, Hosseini MS, Khalili N. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–582.
    1. Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52.
    1. Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71:226–235.
    1. Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium. 2002;9:231–238.
    1. Milligan SA, Owens MW, Grisham MB. Augmentation of cytokine-induced nitric oxide synthesis by hydrogen peroxide. Am J Physiol. 1996;271:L114–120.
    1. Kohli K, Ali J, Ansari MJ, Raheman Z. Curcumin: A natural anti-inflammatory agent. Indian J Pharmacol. 2005;37:141–147.
    1. Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol. 2004;49:203–220.
    1. Fong G-H. Mechanism of adaptive angiogenesis and tissue hypoxia. Angiogenesis. 2008;11:121–140.
    1. Chen WH, Chen Y, Cui GH. Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells on angiogenesis in ECV304 cells. Chin Med J. 2005;118:2052–2057.
    1. Millanta F, Citi S, Della Santa D, et al. COX-2 expression in canine and feline invasive mammary carcinomas: Correlation with clinicopathological features and prognostic molecular markers. Breast Cancer Res Treat. 2006;98:115–120.
    1. Yoysungnoen P, Wirachwong P, Bhattarakosol P, et al. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 2006;34:109–115.
    1. Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumIn: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 2005;104:1322–1331.
    1. Arbiser JL, Klauber N, Rohan R. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4:376–383.
    1. Mohan R, Sivak J, Ashton P, et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2 including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000;275:10405–10412.
    1. Gururaj A, Belakavadi M, Venkatesh DA, et al. Molecular mechanisms of antiangiogenic effect of curcumin. Biochem Biophys Res Commun. 2002;297:934–942.
    1. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007;595:185–195.
    1. Aggarwal BB, Natarajan K. Tumor necrosis factor Developments during the last decade. Eur Cytokine Netw. 1996;7:93–124.
    1. Li H, Soria C, Griscelli F, et al. Amino-terminal fragment of urokinase inhibits tumor cell invasion in vitro and in vivo: Respective contribution of the urokinase plasminogen activator receptor-dependent or -independent pathway. Hum Gene Ther. 2005;16:1157–1167.
    1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumIn: Preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–398.
    1. Santibanez JF, Quintanilla M, Martinez J. Genistein and curcumin block TGF beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr Cancer. 2000;37:49–54.
    1. Skopiński P, Szaflik J, Duda-Król B, et al. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone. Int J Mol Med. 2004;14:707–711.
    1. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.
    1. Kim Y-W, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123:625–631.
    1. Radomska-Leśniewska DM, Skopiński P, Bałan JB, et al. Angiomodulatory properties of Rhodiola spp. And other natural antioxidants. Centr Eur J Immunol. 2015;40:249–262.
    1. Radomska-Leśniewska DM, Bałan JB, Skopiński P. Angiogenesis modulation by exogenous antioxidants. Centr Eur J Immunol. 2017;42:370–376.
    1. Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4:376–383.
    1. Kim JS, Choi JS, Chung SK. The effect of curcumin on corneal neovascularization in rabbit eyes. Curr Eye Res. 2010;35:274–280.
    1. Pradhan N, Guha R, Chowdhury S, et al. Curcumin nanoparticles inhibit corneal neovascularization. J Mol Med (Berl) 2015;93:1095–1106.
    1. Gao Y, Zhang Y, Ru YS, et al. Ocular surface changes in type II diabetic patients with proliferative diabetic retinopathy. Int J Ophthalmol. 2015;8:358–364.
    1. Guo C, Li M, Qi X, et al. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep. 2016;6:29753.
    1. Niederkorn JY, Stern ME, Pflugfelder SC, et al. Desiccating stress induces T cell-mediated Sjogren’s Syndrome-like lacrimal keratoconjunctivitis. J Immunol. 2006;176:3950–3957.
    1. Li DQ, Luo L, Chen Z, et al. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82:588–596.
    1. Chung SH, Choi SH, Choi JA, et al. Curcumin suppresses ovalbumin-induced allergic conjunctivitis. Mol Vis. 2012;18:1966–1972.
    1. Chen M, Hu DN, Pan Z, et al. Curcumin protects against hyperosmoticity-induced IL-1beta elevation in human corneal epithelial cell via MAPK pathways. Exp Eye Res. 2010;90:437–443.
    1. Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. JAMA. 2013;310:1721–1729.
    1. Srinivas C, Prabhakaran KV. Haridra (curcuma longa) and its effect on abhisayanda (conjunctivitis) Anc Sci Life. 1989;8:279–282.
    1. Biswas NR, Gupta SK, Das GK, et al. Evaluation of Ophthacare eye drops – a herbal formulation in the management of various ophthalmic disorders. Phytother Res. 2001;15:618–620.
    1. Zhang M, Bian F, Wen C, Hao N. Inhibitory effect of curcumin on proliferation of human pterygium fibroblasts. J Huazhong Univ Sci Technol Med Sci. 2007;27:339–342.
    1. Lal B, Kapoor AK, Asthana OP, et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res. 1999;13:318–322.
    1. Agarwal R, Gupta SK, Agarwal P, Srivastava S. Topically applied standardized aqueous extract of Curcuma longa Linn. suppresses endotoxininduced uveal inflammation in rats. Indian J Exp Biol. 2013;51:797–803.
    1. Gupta SK, Agarwal R, Srivastava S, et al. The anti-inflammatory effects of Curcuma longa and Berberis aristata in endotoxin-induced uveitis in rabbits. Invest Ophthalmol Vis Sci. 2008;49:4036–4040. Quigley HA (1993): Open-angle glaucoma. N Engl J Med 328: 1097-1106.
    1. Mantravadi AV, Vadhar N. Glaucoma. Primary Care. 2015;42:437–449.
    1. Yue YK, Mo B, Zhao J, et al. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model. J Ocul Pharmacol Ther. 2014;30:657–664.
    1. Wang L, Li C, Guo H, et al. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS ONE. 2011;6:e23194.
    1. Burugula B, Ganesh BS, Chintala SK. Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2011;52:4263–4273.
    1. Chhunchha B, Fatma N, Bhargavan B, et al. Specificity protein, Sp1-mediated increased expression of Prdx6 as a curcumin-induced antioxidant defense in lens epithelial cells against oxidative stress. Cell Death Dis. 2011;2:e234.
    1. Manikandan R, Thiagarajan R, Beulaja S, et al. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: an in vitro study using isolated lens. Chem Biol Interact. 2009;181:202–209.
    1. Murugan P, Pari L. Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci. 2006;79:1720–1728.
    1. Padmaja S, Raju TN. Antioxidant effect of curcumin in selenium induced cataract of Wistar rats. Indian J Exp Biol. 2004;42:601–603.
    1. Suryanarayana P, Saraswat M, Mrudula T, et al. Curcumin and turmeric delay streptozotocin induced diabetic cataract in rats. Invest Ophthalmol Vis Sci. 2005;46:2092–2099.
    1. Manikandan R, Thiagarajan R, Beulaja S, et al. Effect of curcumin on selenite-induced cataractogenesis in Wistar rat pups. Curr Eye Res. 2010;35:122–129.
    1. Manikandan R, Beulaja M, Thiagarajan R, Arumugam M. Effect of curcumin on the modulation of alphaA- and alphaB-crystallin and heat shock protein 70 in selenium-induced cataractogenesis in Wistar rat pups. Mol Vis. 2011;17:388–394.
    1. Polaczek-Krupa B, Czechowicz-Janicka K. Symptoms, diagnostics and treatment of the age-related macular degeneration. Przew Lek. 2005;8:45–53.
    1. Zhu W, Wu Y, Meng YF. Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther. 2015;9:5337–5344.
    1. Woo JM, Shin DY, Lee SJ, et al. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Mol Vis. 2012;18:901–908.
    1. Mandal MN, Patlolla JM, Zheng L, et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med. 2009;46:672–679.
    1. Barber AJ. Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci. 2015;58:541–549.
    1. Wan TT, Li XF, Sun YM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother. 2015;74:145–147.
    1. Wu Y, Tang L, Chen B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev. 2014;2014:752387.
    1. Gupta SK, Kumar B, Nag TC, et al. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 2011;27:123–130.
    1. Wang C, George B, Chen S, et al. Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev. 2012;28:329–337.
    1. Khimmaktong W, Petpiboolthai H, Sriya P, Anupunpisit V. Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat’s choroid of eye. J Med Assoc Thail. 2014;97(Suppl 2):S39–S46.

Source: PubMed

3
Abonnere