Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods

Günter C Müller, John C Beier, Sekou F Traore, Mahamoudou B Toure, Mohamed M Traore, Sekou Bah, Seydou Doumbia, Yosef Schlein, Günter C Müller, John C Beier, Sekou F Traore, Mahamoudou B Toure, Mohamed M Traore, Sekou Bah, Seydou Doumbia, Yosef Schlein

Abstract

Background: Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control.

Methods: Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light.

Results: Of the 26 fruits and seedpods tested, 6 were attractive to An. gambiae s.l. females and males, respectively. Guava (Psidium guajava) and honey melon (Cucumis melo) were the two most attractive fruits for both females and males. Of the 26 flowering plants tested, 9 were significantly attractive for females, and 8 were attractive for males. Acacia macrostachya was the most attractive flowering plant. Periodicity studies using this plant showed peaks of An. gambiae s.l. attraction between 1930 and 2200 h and 0400-0500 h, which differed considerably from the response to human odors, which expectedly peaked at around midnight.

Conclusion: These field experiments in Mali highlight that female and male An. gambiae s.l. have pronounced differences in attraction for diverse types of indigenous fruits/seedpods and flowering plants. The identification of attractive fruits and seedpods shows that a variety of indigenous and locally abundant natural products could potentially be used as juices to make ATSB solution for mosquito control. As well, the simple methods used to identify the most attractive flowering plants provide valuable insights into the natural history of sugar feeding for An. gambiae s.l. These observations can be used to guide future strategies for employing ATSB methods for malaria vector control in Africa. They also provide a basis for subsequent chemical analysis and development of attractive baits for mosquito control.

Figures

Figure 1
Figure 1
Picture of the type of glue trap used for testing mosquito attraction to local fruits/seedpods and flowering plants in Mali. The three pictures show how traps are mounted, how flowering plants are inserted, and how the outside of the trap is painted with glue.
Figure 2
Figure 2
Pictures of the most attractive fruits/seedpods determined for Anopheles gambiae s.l. in Mali.
Figure 3
Figure 3
Pictures of the most attractive flowering plants determined for Anopheles gambiae s.l. in Mali.
Figure 4
Figure 4
Picture of the only repellent plant (H. suaveolens) determined for Anopheles gambiae s.l. in Mali.
Figure 5
Figure 5
Nocturnal periodicity of Anopheles gambiae s,l. (± SE) females (5A) and males (5B) to 8 replicates each for the most attractive flowering plant (A. macrostachya), human odor from worn socks (females only), compared with catches from CDC light traps.

References

    1. Touré YT, Petrarca V, Traoré SF, Coulibaly A, Maiga HM, Sankaré O, Sow M, Di Deco MA, Coluzzi M. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998;40:477–511.
    1. White GB. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68:278–298. doi: 10.1016/0035-9203(74)90035-2.
    1. Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ. Integrated vector management for malaria control. Malar J. 2008;7:54. doi: 10.1186/1475-2875-7-S1-S4.
    1. WHO. Global strategic framework for integrated vector management. WHO/CDS/CPE/PVC/2004. 2004. pp. 1–12.
    1. WHO. Report of the WHO consultation on integrated vector management (IVM) World Health Organization; 2007.
    1. Müller GC, Schlein Y. Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol. 2006;36:1077–1080. doi: 10.1016/j.ijpara.2006.06.008.
    1. Schlein Y, Müller GC. An approach to mosquito control: Using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol. 2008;45:384–390. doi: 10.1603/0022-2585(2008)45[384:AATMCU];2.
    1. Müller GC, Schlein Y. Efficacy of toxic sugar baits against adult cistern-dwelling Anopheles claviger. Trans R Soc Trop Med Hyg. 2008;102:480–484. doi: 10.1016/j.trstmh.2008.01.008.
    1. Müller GC, Kravchenko VD, Schlein Y. Decline of Anopheles sergentii and Aedes caspius populations following presentation of attractive, toxic (Spinosad), sugar bait stations in an oasis. J Am Mosq Contr Assoc. 2008;24:147–149. doi: 10.2987/8756-971X(2008)24[147:DOASAA];2.
    1. Müller GC, Junnila A, Schlein Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval developmental sites. J Med Entomol. 2010;47:63–66. doi: 10.1603/033.047.0108.
    1. Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S, Schlein Y. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malaria J. 2010;9:210. doi: 10.1186/1475-2875-9-210.
    1. Müller GC, Schlein Y. Adult Culex pipiens gathering in vegetation proximal to water in a dry climate are targets for control. Med Vet Entomol. 2010. in press .
    1. Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, Beier JC, Hassanali A, Knols BG. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol. 2004;18:108–115. doi: 10.1111/j.0269-283X.2004.00484.x.
    1. Manda H, Gouagna LC, Foster WA, Jackson RR, Beier JC, Githure JI, Hassanali A. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J. 2007;6:113. doi: 10.1186/1475-2875-6-113.
    1. Manda H, Gouagna LC, Nyandat E, Kabiru EW, Jackson RR, Foster WA, Githure JI, Beier JC, Hassanali A. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol. 2007;21:103–111. doi: 10.1111/j.1365-2915.2007.00672.x.
    1. Sogoba N, Vounatsou P, Bagayoko MM, Doumbia S, Dolo G, Gosoniu L, Traore SF, Toure YT, Smith T. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae) in Mali. Geospat Health. 2007;1:213–22.
    1. Dicko A, Mantel C, Kouriba B, Sagara I, Thera MA, Doumbia S, Diallo M, Poudiougou B, Diakite M, Doumbo OK. Season, fever prevalence and pyrogenic threshold for malaria disease definition in an endemic area of Mali. Trop Med Int Health. 2005;10:550–556. doi: 10.1111/j.1365-3156.2005.01418.x.
    1. Gillies MT, DeMeillon B. Publication of the South Africa Institute of Med Res. Vol. 54. Hortors Printers Johannesburg, South Africa; 1968. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region)
    1. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–529.
    1. Gary RE Jr, Foster WA. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol. 2004;18:102–107. doi: 10.1111/j.0269-283X.2004.00483.x.
    1. Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–474. doi: 10.1146/annurev.en.40.010195.002303.
    1. Foster WA. Pytochemicals as population sampling lures. J Am Mosq Control Assoc. 2008;24:138–146. doi: 10.2987/8756-971X(2008)24[138:PAPSL];2.
    1. Seyoum A, Kabiru EW, Lwande W, Killeen GF, Hassanali A, Knols BG. Repellency of live potted plants against Anopheles gambiae from human baits in semi-field experimental huts. Am J Trop Med Hyg. 2002;67:191–195.

Source: PubMed

3
Abonnere