Vitamin D: Brain and Behavior

Darryl Walter Eyles, Darryl Walter Eyles

Abstract

It has been 20 years since we first proposed vitamin D as a "possible" neurosteroid.( 1 ) Our work over the last two decades, particularly results from our cellular and animal models, has confirmed the numerous ways in which vitamin D differentiates the developing brain. As a result, vitamin D can now confidently take its place among all other steroids known to regulate brain development.( 2 ) Others have concentrated on the possible neuroprotective functions of vitamin D in adult brains. Here these data are integrated, and possible mechanisms outlined for the various roles vitamin D appears to play in both developing and mature brains and how such actions shape behavior. There is now also good evidence linking gestational and/or neonatal vitamin D deficiency with an increased risk of neurodevelopmental disorders, such as schizophrenia and autism, and adult vitamin D deficiency with certain degenerative conditions. In this mini-review, the focus is on what we have learned over these past 20 years regarding the genomic and nongenomic actions of vitamin D in shaping brain development, neurophysiology, and behavior in animal models. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Keywords: BRAIN; DEVELOPMENT; NEUROPROTECTION; VITAMIN D DEFICIENCY.

© 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Figures

Fig 1
Fig 1
Vitamin D and its effects on brain and behavior. (A) Depicts the progressive molecular, cellular, brain structural and behavioral abnormalities induced in the developmental vitamin D (DVD)‐deficient rat model. (B) Far less investigation has been conducted on adult vitamin D (AVD)‐deficiency reflecting less certainty regarding the use of this model to study brain disorders. (C) There have been numerous studies in models of relevance to either Alzheimer or Parkinson disease indicating intervention with vitamin D may have therapeutic potential. Autism Spectrum Disorder (ASD) = _______; GABA = gamma‐aminobutyric acid; GLU = glutamate.

References

    1. McGrath J, Feron F, Eyles D. Vitamin D: the neglected neurosteroid? Trends Neurosci. 2001;24(10):570–2.
    1. Melcangi RC, Panzica G. Neuroactive steroids: an update of their roles in central and peripheral nervous system. Psychoneuroendocrinology. 2009;34(Suppl 1):S1–8.
    1. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha‐hydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21–30.
    1. Garcion E, Wion‐Barbot N, Montero‐Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002;13(3):100–5.
    1. Landel V, Stephan D, Cui X, Eyles D, Feron F. Differential expression of vitamin D‐associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol. 2018;177:129–34.
    1. Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013;34(1):47–64.
    1. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J. 2008;22(4):982–1001.
    1. McGrath JJ, Eyles DW, Pedersen CB, et al. Neonatal vitamin D status and risk of schizophrenia: a population‐based case‐control study. Arch Gen Psychiatry. 2010;67(9):889–94.
    1. Eyles DW, Trzaskowski M, Vinkhuyzen AAE, et al. The association between neonatal vitamin D status and risk of schizophrenia. Sci Rep. 2018;8:17692.
    1. Vinkhuyzen AAE, Eyles DW, Burne THJ, et al. Gestational vitamin D deficiency and autism‐related traits: the Generation R study. Mol Psychiatry. 2018. Feb;23(2):240–6.
    1. Vinkhuyzen A, Eyles D, Burne T, et al. Gestational vitamin D deficiency and autism spectrum disorder. Br J Psychiatry Open. 2017;3(2):85–90.
    1. Lee BK, Eyles DW, Magnusson C, et al. Developmental vitamin D and autism spectrum disorders: findings from the Stockholm Youth Cohort. Mol Psychiatry. 2019. Nov 6; 1–11. 10.1038/s41380-019-0578-y
    1. Groves N, McGrath J, Burne T. Adult vitamin D deficiency and adverse brain outcomes In Feldman D, ed. Vitamin D vol 2 health, disease and therapeutics. 4th ed London: Elsevier; 2018. pp 1147–58.
    1. Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EM. Systematic review of the relationship between vitamin D and Parkinson's disease. J Parkinsons Dis. 2016;6(1):29–37.
    1. Eyles D, McGrath J. Adult vitamin D deficiency and adverse brain outcomes In Feldman D, ed. Vitamin D Vol 2 health, disease and therapeutics. 4th ed London: Elsevier; 2018.
    1. Holmøy T, Moen SM. Assessing vitamin D in the central nervous system. Acta Neurol Scand. 2010;122(S190):88–92.
    1. Fu X, Dolnikowski GG, Patterson WB, et al. Determination of vitamin D and its metabolites in human brain using an ultra‐pressure LC‐tandem mass spectra method. Curr Dev Nutr. 2019;3(7):nzz074.
    1. Prufer K, Jirikowski GF. 1.25‐dihydroxyvitamin D3 receptor is partly colocalized with oxytocin immunoreactivity in neurons of the male rat hypothalamus. Cell Mol Biol (Noisy‐le‐grand). 1997;43(4):543–8.
    1. Clemens TL, McGlade SA, Garrett KP, Horiuchi N, Hendy GN. Tissue‐specific regulation of avian vitamin D‐dependent calcium‐binding protein 28‐kDa mRNA by 1,25‐dihydroxyvitamin D3. J Biol Chem. 1988;263(26):13112–6.
    1. Prufer K, Veenstra TD, Jirikowski GF, Kumar R. Distribution of 1,25‐dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat. 1999;16(2):135–45.
    1. Walbert T, Jirikowski GF, Prufer K. Distribution of 1,25‐dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of the rat. Horm Metab Res. 2001;33(9):525–31.
    1. Craig TA, Sommer S, Sussman CR, Grande JP, Kumar R. Expression and regulation of the vitamin D receptor in the zebrafish, Danio rerio. J Bone Miner Res. 2008;23(9):1486–96.
    1. Langub MC, Herman JP, Malluche HH, Koszewski NJ. Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience. 2001;104(1):49–56.
    1. Wang Y, Becklund BR, DeLuca HF. Identification of a highly specific and versatile vitamin D receptor antibody. Arch Biochem Biophys. 2010;494(2):166–77.
    1. Wang Y, DeLuca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152(2):354–63.
    1. Eyles DW, Liu PY, Josh P, Cui X. Intracellular distribution of the vitamin D receptor in the brain: comparison with classic target tissues and redistribution with development. Neuroscience. 2014;268:1–9.
    1. Stumpf WE, O'Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.
    1. Cui X, Pelekanos M, Liu PY, Burne THJ, McGrath JJ, Eyles D. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ortogenesis in rat midbrain. Neuroscience. 2013;236:77–87.
    1. Veenstra TD, Prufer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R. 1,25‐dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res. 1998;804(2):193–205.
    1. Erben RG, Soegiarto DW, Weber K, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol. 2002;16(7):1524–37.
    1. Mehta RG, Mehta RR. Vitamin D and cancer. J Nutr Biochem. 2002;13(5):252–64.
    1. Cui X, McGrath JJ, Burne TH, Mackay‐Sim A, Eyles DW. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int J Dev Neurosci. 2007;25(4):227–32.
    1. Burkert R, McGrath J, Eyles D. Vitamin D receptor expression in the embryonic rat brain. Neurosci Res Comm. 2003;33(1):63–71.
    1. Fu GK, Lin D, Zhang MY, et al. Cloning of human 25‐hydroxyvitamin D‐1 alpha‐hydroxylase and mutations causing vitamin D‐dependent rickets type 1. Mol Endocrinol. 1997;11(13):1961–70.
    1. Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25‐hydroxyvitamin d(3)‐1 alpha‐hydroxylase. J Clin Endocrinol Metab. 2001;86(2):888–94.
    1. Smolders J, Schuurman KG, van Strien ME, et al. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis—affected brain tissue. J Neuropathol Exp Neurol. 2013;72(2):91–105.
    1. Burne TH, Becker A, Brown J, Eyles DW, Mackay‐Sim A, McGrath JJ. Transient prenatal Vitamin D deficiency is associated with hyperlocomotion in adult rats. Behav Brain Res. 2004;154(2):549–55.
    1. Eyles D, Brown J, Mackay‐Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience. 2003;118(3):641–53.
    1. Eyles DW, Burne THJ, Alexander S, Cui X, McGrath JJ. The developmental vitamin D (DVD) model of schizophrenia In O'Donnell P, ed. Animal models of schizophrenia and related disorders, neuromethods. Totowa: Humana Press; 2011. pp 113–25.
    1. O'Loan J, Eyles DW, Kesby J, Ko P, McGrath JJ, Burne TH. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology. 2007;32(3):227–34.
    1. de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Feron F. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav Brain Res. 2010;208:603–8.
    1. Becker A, Grecksch G. Pharmacological treatment to augment hole board habituation in prenatal vitamin D‐deficient rats. Behav Brain Res. 2006;166(1):177–83.
    1. Pan P, Jin DHS, Chatterjee‐Chakraborty M, et al. The effects of vitamin D3 during pregnancy and lactation on offspring physiology and behavior in Sprague‐Dawley rats. Dev Psychobiol. 2014;56:12–22.
    1. Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res. 2015;286:192–200.
    1. Ko P, Burkert R, McGrath J, Eyles D. Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res Dev Brain Res. 2004;153(1):61–8.
    1. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25‐dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett. 2003;343(2):139–43.
    1. Marini F, Bartoccini E, Cascianelli G, et al. Effect of 1alpha,25‐dihydroxyvitamin D3 in embryonic hippocampal cells. Hippocampus. 2010;20(6):696–705.
    1. Harms LH, Cowin G, Eyles DW, Kurniawan N, McGrath JJ, Burne THJ. Neuroanatomy and psychomimetic‐induced locomotion in C57BL/6J and 129/X1SvJ mice exposed to developmental vitamin D deficiency. Behav Brain Res. 2012;230:125–31.
    1. Feron F, Burne TH, Brown J, et al. Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull. 2005;65(2):141–8.
    1. Fernandes de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Feron F. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav Brain Res. 2010;208(2):603–8.
    1. Annweiler C, Montero‐Odasso M, Hachinski V, Seshadri S, Bartha R, Beauchet O. Vitamin D concentration and lateral cerebral ventricle volume in older adults. Mol Nutr Food Res. 2013;57(2):267–76.
    1. Kaneko I, Sabir MS, Dussik CM, et al. 1,25‐dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J. 2015;29(9):4023–35.
    1. Sabir MS, Haussler MR, Mallick S, et al. Optimal vitamin D spurs serotonin: 1,25‐dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO‐A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr. 2018;13:19.
    1. Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398–413.
    1. Gates MA, Torres EM, White A, Fricker‐Gates RA, Dunnett SB. Re‐examining the ontogeny of substantia nigra dopamine neurons. Eur J Neurosci. 2006;23(5):1384–90.
    1. Cui X, Pelekanos M, Burne TH, McGrath JJ, Eyles DW. Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci Lett. 2010;486(3):220–3.
    1. Joseph B, Wallen‐Mackenzie A, Benoit G, et al. p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci U S A. 2003;100(26):15619–24.
    1. Kadkhodaei B, Ito T, Joodmardi E, et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci. 2009;29(50):15923–32.
    1. Wallen AA, Castro DS, Zetterstrom RH, et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci. 2001;18(6):649–63.
    1. Luan W, Hammond LA, Cotter E, et al. Developmental vitamin D (DVD) deficiency reduces Nurr1 and TH expression in post‐mitotic dopamine neurons in rat mesencephalon. Mol Neurobiol. 2018;55(3):2243–453.
    1. Kesby JP, Cui X, Ko P, McGrath JJ, Burne TH, Eyles DW. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci Lett. 2009;461(2):155–8. Epub 2009/06/09.
    1. Tesic D, Hawes JE, Zosky GR, Wyrwoll CS. Vitamin D deficiency in BALB/c mouse pregnancy increases placental transfer of glucocorticoids. Endocrinology. 2015;156(10):3673–9.
    1. Kesby JP, Cui X, O'Loan J, McGrath JJ, Burne TH, Eyles DW. Developmental vitamin D deficiency alters dopamine‐mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology (Berl). 2010;208(1):159–68.
    1. Eyles D, Almeras L, Benech P, et al. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol. 2007;103(3‐5):538–45.
    1. Almeras L, Eyles D, Benech P, et al. Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics. 2007;7(5):769–80.
    1. McGrath J, Iwazaki T, Eyles D, et al. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency. PLoS One. 2008. Jun 11;3(6):e2383.
    1. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci. 2001;24:1161–92.
    1. Yates NJ, Tesic D, Feindel KW, et al. Vitamin D is crucial for maternal care and offspring social behaviour in rats. J Endocrinol. 2018;237(2):73–85.
    1. Ali A, Vasileva S, Langguth M, et al. Deveopmental vitamin D deficiency produces behavioral phenotypes of relevance to autism in an animal model. Nutrients. 2019;11(5):E1187.
    1. Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci. 2012;14(3):293–305.
    1. Kesby JP, Burne TH, McGrath JJ, Eyles DW. Developmental vitamin D deficiency alters MK 801‐induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol Psychiatry. 2006;60(6):591–6.
    1. Kesby JP, O'Loan JC, Alexander S, et al. Developmental vitamin D deficiency alters MK‐801‐induced behaviours in adult offspring. Psychopharmacology (Berl). 2012;220(3):455–63.
    1. Grecksch G, Ruthrich H, Hollt V, Becker A. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology. 2009;34(Suppl 1):S258–64.
    1. Becker A, Eyles DW, McGrath JJ, Grecksch G. Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res. 2005;161(2):306–12.
    1. Turner KM, Young JW, McGrath JJ, Eyles DW, Burne THJ. Cognitive performance and response inhibition in developmentally vitamin D (DVD)‐deficient rats. Behav Brain Res. 2013;242:47–53.
    1. Overeem K, Alexander S, Burne THJ, Ko P, Eyles DW. Developmental Vitamin D deficiency in the rat impairs recognition memory, but has no effect on social approach or hedonia. Nutrients. 2019;11(11):1–14. 10.3390/nu11112713.
    1. Harms LH, Turner KM, Eyles DW, Young JW, McGrath JJ, BUrne THJ. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency. PLoS One. 2012;7(4):e35896.
    1. Harms LR, Eyles DW, McGrath JJ, Mackay‐Sim A, Burne TH. Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice. Behav Brain Res. 2008;187(2):343–50.
    1. Hart PH, Lucas RM, Walsh JP, et al. Vitamin D in fetal development: findings from a birth cohort study. Pediatrics. 2015;135(1):e167–73.
    1. Strøm M, Halldorsson T, Hansen S, et al. Vitamin D measured in maternal serum and offspring neurodevelopmental outcomes: a prospective study with long‐term follow‐up. Ann Nutr Metab. 2014;64(3‐4):254–61.
    1. Schoenrock SA, Tarantino LM. Deveopmental vitamin D deficiency and schizophrenia: the role of animal models. Genes Brain Behav. 2016;15:45–61.
    1. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor‐knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 2001;98(23):13324–9.
    1. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16(4):391–6.
    1. Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D‐dependent rickets type II with alopecia. Proc Natl Acad Sci U S A. 1997;94(18):9831–5.
    1. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25‐hydroxyvitamin D 1alpha ‐hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci U S A. 2001;98(13):7498–503.
    1. Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St‐Arnaud R. Targeted inactivation of the 25‐hydroxyvitamin D(3)‐1(alpha)‐hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D‐deficiency rickets. Endocrinology. 2001;142(7):3135–41.
    1. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Increased anxiety in mice lacking vitamin D receptor gene. Neuroreport. 2004;15(8):1271–4.
    1. Minasyan A, Keisala T, Lou YR, Kalueff AV, Tuohimaa P. Neophobia, sensory and cognitive functions, and hedonic responses in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol. 2007;104(3‐5):274–80.
    1. Keisala T, Minasyan A, Jarvelin U, et al. Aberrant nest building and prolactin secretion in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol. 2007;104(3‐5):269–73.
    1. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25‐Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin‐angiotensin system. J Clin Invest. 2002;110(2):229–38.
    1. Xiang W, Kong J, Chen S, et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin‐angiotensin systems. Am J Physiol Endocrinol Metab. 2005;288(1):E125–32.
    1. Tishkoff DX, Nibbelink KA, Holmberg KH, Dandu L, Simpson RU. Functional vitamin D receptor (VDR) in the t‐tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology. 2008;149(2):558–64.
    1. Wong KE, Szeto FL, Zhang W, et al. Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab. 2009;296(4):E820–8.
    1. Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008;29(6):407–14.
    1. Burne TH, Johnston AN, McGrath JJ, Mackay‐Sim A. Swimming behaviour and post‐swimming activity in Vitamin D receptor knockout mice. Brain Res Bull. 2006;69(1):74–8.
    1. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Impaired motor performance in mice lacking neurosteroid vitamin D receptors. Brain Res Bull. 2004;64(1):25–9.
    1. St‐Arnaud R, Dardenne O, Prud'homme J, Hacking SA, Glorieux FH. Conventional and tissue‐specific inactivation of the 25‐hydroxyvitamin D‐1alpha‐hydroxylase (CYP27B1). J Cell Biochem. 2003;88(2):245–51.
    1. Byrne JH, Voogt M, Turner KM, Eyles DW, McGrath JJ, Burne TH. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague‐Dawley rats. PLoS One. 2013;8(8):e71593.
    1. Keeney JTR, Forster S, Sultana R, et al. Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D‐dependent age‐related cognitive decline. Free Radic Biol Med. 2013;65:324–34.
    1. Brouwer‐Brolsma EM, Schuurman T, de Groot LC, et al. No role for vitamin D or a moderate fat diet in aging induced cognitive decline and emotional reactivity in C57BL/6 mice. Behav Brain Res. 2014;267:133–43.
    1. Groves NJ, Burne TH. Sex‐specific attentional deficits in adult vitamin D deficient BALB/c mice. Physiol Behav. 2016;157:94–101.
    1. Groves NJ, Kesby JP, Eyles DW, McGrath JJ, Mackay‐Sim A, Burne TH. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav Brain Res. 2013;241:120–31.
    1. Latimer CS, Brewer LD, Searcy JL, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci U S A. 2014;111(41):E4359–66.
    1. Groves NJ, Zhou M, Jhaveri DJ, McGrath JJ, Burne THJ. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice. Psychoneuroendocrinology. 2017;86:53–63.
    1. Al‐Amin MM, Sullivan RKP, Kurniawan ND, Burne THJ. Adult vitamin D deficiency disrupts hippocampal‐dependent learning and structural brain connectivity in BALB/c mice. Brain Struct Funct. 2019;224(3):1315–29.
    1. Bennett L, Kersaitis C, Macaulay SL, et al. Vitamin D2‐enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS One. 2013;8(10):e76362.
    1. Morello M, Landel V, Lacassagne E, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer's disease. Mol Neurobiol. 2018;55(8):6463–79.
    1. Briones TL, Darwish H. Vitamin D mitigates age‐related cognitive decline through the modulation of pro‐inflammatory state and decrease in amyloid burden. J Neuroinflammation. 2012;9:244.
    1. Yu J, Gattoni‐Celli M, Zhu H, et al. Vitamin D3‐enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis. 2011;25(2):295–307.
    1. Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T. 1alpha,25‐dihydroxyvitamin D3 enhances cerebral clearance of human amyloid‐beta peptide(1‐40) from mouse brain across the blood‐brain barrier. Fluids Barriers CNS. 2011;8:20.
    1. Grimm MO, Lehmann J, Mett J, et al. Impact of vitamin D on amyloid precursor protein processing and amyloid‐beta peptide degradation in Alzheimer's disease. Neurodegener Dis. 2014;13(2‐3):75–81.
    1. Sanchez B, Relova JL, Gallego R, Ben‐Batalla I, Perez‐Fernandez R. 1,25‐dihydroxyvitamin D3 administration to 6‐hydroxydopamine‐lesioned rats increases glial cell line‐derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res. 2009;87(3):723–32.
    1. Wang JY, Wu JN, Cherng TL, et al. Vitamin D‐3 attenuates 6‐hydroxydopamine‐induced neurotoxicity in rats. Brain Res. 2001;904(1):67–75.
    1. Chen KB, Lin AM, Chiu TH. Systemic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann N Y Acad Sci. 2003;993:313–24; discussion 45‐9.
    1. Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine‐ and serotonin‐depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci. 2006;1074:261–71.
    1. Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res. 1996;36(1):193–6.
    1. Cui X, Pertile R, Liu P, Eyles DW. Vitamin D regulates tyrosine hydroxylase expression: N‐cadherin a possible mediator. Neuroscience. 2015;304:90–100.
    1. Pertile R, Cui X, Hammond LA, Eyles DW. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J. 2018;32(2):819–28.
    1. Lima LAR, Lopes MJP, Costa RO, et al. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation. 2018;15(1):249.
    1. Horst RL, Napoli JL, Littledike ET. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem J. 1982;204(1):185–9.
    1. Chabas JF, Alluin O, Rao G, et al. Vitamin D2 potentiates axon regeneration. J Neurotrauma. 2008;25(10):1247–56.
    1. Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 1,25‐dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res. 1991;28(1):110–4.
    1. Neveu I, Naveilhan P, Jehan F, et al. 1,25‐dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res. 1994;24(1‐4):70–6.
    1. Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M. 1,25‐dihydroxyvitamin D3 regulates NT‐3, NT‐4 but not BDNF mRNA in astrocytes. Neuroreport. 1994;6(1):124–6.
    1. Dursun E, Gezen‐Ak D, Yilmazer S. A novel perspective for Alzheimer's disease: vitamin D receptor suppression by amyloid‐beta and preventing the amyloid‐beta induced alterations by vitamin D in cortical neurons. J Alzheimers Dis. 2011;23(2):207–19.
    1. Gezen‐Ak D, Dursun E, Yilmazer S. The effects of vitamin D receptor silencing on the expression of LVSCC‐A1C and LVSCC‐A1D and the release of NGF in cortical neurons. PLoS One. 2011;6(3):e17553.
    1. Saporito MS, Wilcox HM, Hartpence KC, Lewis ME, Vaught JL, Carswell S. Pharmacological induction of nerve growth factor mRNA in adult rat brain. Exp Neurol. 1993;123(2):295–302.
    1. Granholm AC, Reyland M, Albeck D, et al. Glial cell line‐derived neurotrophic factor is essential for postnatal survival of midbrain dopamine neurons. J Neurosci. 2000;20(9):3182–90.
    1. Oo TF, Burke RE. The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Brain Res Dev Brain Res. 1997;98(2):191–6.
    1. Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX. 1,25‐dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol. 2015;98(2):240–5.
    1. Orme RP, Bhangal MS, Fricker RA. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS One. 2013;23(8):e62040.
    1. Sonnenberg J, Luine VN, Krey LC, Christakos S. 1,25‐Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology. 1986;118(4):1433–9.
    1. Smith MP, Fletcher‐Turner A, Yurek DM, Cass WA. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6‐hydroxydopamine. Neurochem Res. 2006;31(4):533–9.
    1. Luan W, Hammond LA, Vuillermot S, Meyer U, Eyles DW. Maternal vitamin D prevents abnormal dopaminergic development and function in a mouse model of prenatal immune activation. Sci Rep. 2018;8:9741.
    1. Pertile RAN, Cui X, Eyles DW. Vtiamin D signalling and the differentiation of developing dopamine systems. Neuroscience. 2016. Oct 1;333:193–203.
    1. Eyles D, Feldon J, Meyer U. Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Transl Psychiatry. 2012;2:e81.
    1. Tekes K, Gyenge M, Folyovich A, Csaba G. Influence of neonatal vitamin A or vitamin D treatment on the concentration of biogenic amines and their metabolites in the adult rat brain. Horm Metab Res. 2009;41(4):277–80.
    1. Lieberherr M. Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J Biol Chem. 1987;262(27):13168–73.
    1. Caffrey JM, Farach‐Carson MC. Vitamin D3 metabolites modulate dihydropyridine‐sensitive calcium currents in clonal rat osteosarcoma cells. J Biol Chem. 1989;264(34):20265–74.
    1. Ibi M, Sawada H, Nakanishi M, et al. Protective effects of 1 alpha,25‐(OH)(2)D‐3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology. 2001;40(6):761–71.
    1. Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L‐type calcium channel expression in hippocampal neurons. J Neurosci. 2001;21(1):98–108.
    1. Gezen‐Ak D, Dursun E, Yilmazer S. Vitamin D inquiry in hippocampal neurons: consequences of vitamin D‐VDR pathway disruption on calcium channel and the vitamin D requirement. Neurol Sci. 2013;34(8):1453–8.
    1. Zanatta L, Goulart PB, Gonçalves R, et al. 1α,25‐dihydroxyvitamin D(3) mechanism of action: modulation of L‐type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim Biophys Acta. 2012;1823(10):1708–19.
    1. Gooch H, Cui X, Anggono V, et al. 1,25‐Dihydroxyvitamin D modulates L‐type voltage‐gated calcium channels in a subset of neurons in the developing mouse prefrontal cortex. Transl Psychiatry. 2019;9(1):281.
    1. Schizophrenia Working Group of the Psychiatric Genomics C . Biological insights from 108 schizophrenia‐associated genetic loci. Nature. 2014;511(7510):421–7.
    1. Uberti F, Morsanuto V, Bardelli C, Molinari C. Protective effects of 1α,25‐Dihydroxyvitamin D3 on cultured neural cells exposed to catalytic iron. Physiol Rep. 2016;4(11):e12769.
    1. Lin AM, Fan SF, Yang DM, Hsu LL, Yang CH. Zinc‐induced apoptosis in substantia nigra of rat brain: neuroprotection by vitamin D3. Free Radic Biol Med. 2003;34(11):1416–25.
    1. Kasatkina LA, Tarasenko AS, Krupko OO, Kuchmerovska TM, Lisakovska OO, Trikash IO. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol. 2020;119:105665.
    1. Garcion E, Nataf S, Berod A, Darcy F, Brachet P. 1,25‐Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res. 1997;45(2):255–67.
    1. Garcion E, Sindji L, Montero‐Menei C, Andre C, Brachet P, Darcy F. Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25‐dihydroxyvitamin D3. Glia. 1998;22(3):282–94.
    1. Lefebvre d'Hellencourt C, Montero‐Menei CN, Bernard R, Couez D. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J Neurosci Res. 2003;71:575–82.
    1. Hur J, Lee PH, Kim MJ, Cho Y‐W. Regulatory effect of 25‐hydroxyvitamin D3 on nitric oxide production in activated microglia. Korean J Phsiol Pharmacol. 2014;18(5):397–402.
    1. Huang Y, Ho Y, Lai C, Chiu C, Wang Y. 1,25‐dihydroxyvitamin D3 attenuates endotoxin‐induced production of inflammatory mediators by inhibiting MAPK activation in primary cortical neuron‐glia cultures. J Neuroinflammation. 2015;12:147.
    1. Sapolsky RM. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress. 1996;1(1):1–19.
    1. Chen TL, Cone CM, Morey‐Holton E, Feldman D. Glucocorticoid regulation of 1,25(OH)2‐vitamin D3 receptors in cultured mouse bone cells. J Biol Chem. 1982;257(22):13564–9.
    1. Chen TL, Cone CM, Morey‐Holton E, Feldman D. 1 alpha,25‐dihydroxyvitamin D3 receptors in cultured rat osteoblast‐like cells. Glucocorticoid treatment increases receptor content. J Biol Chem. 1983;258(7):4350–5.
    1. Neveu I, Barbot N, Jehan F, Wion D, Brachet P. Antagonistic effects of dexamethasone and 1,25‐dihydroxyvitamin D3 on the synthesis of nerve growth factor. Mol Cell Endocrinol. 1991;78(3):R1–6.
    1. Neveu I, Jehan F, Wion D. Alteration in the levels of 1,25‐(OH)2D3 and corticosterone found in experimental diabetes reduces nerve growth factor (NGF) gene expression in vitro. Life Sci. 1992;50(23):1769–72.
    1. Lundqvist J, Norlin M, Wikvall K. 1alpha,25‐dihydroxyvitamin D3 affects hormone production and expression of steroidogenic enzymes in human adrenocortical NCI‐H295R cells. Biochim Biophys Acta. 2010;1801(9):1056–62.
    1. Obradovic D, Gronemeyer H, Lutz B, Rein T. Cross‐talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem. 2006;96(2):500–9.
    1. Jiang P, Xue Y, Li HD, et al. Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. Psychopharmacology (Berl). 2014;231(17):3345–51.
    1. Camargo A, Dalmagro AP, Platt N, et al. Cholecalciferol abolishes depressive‐like behavior and hippocampal glucocorticoid receptor impairment induced by chronic corticosterone administration in mice. Pharmacol Biochem Behav. 2020;196:172971.
    1. Camargo A, Dalmagro AP, Rikel L, da Silva EB, da Silva KAB S, ALB Z. Cholecalciferol counteracts depressive‐like behavior and oxidative stress induced by repeated corticosterone treatment in mice. Eur J Pharmacol. 2018;833:451–61.
    1. Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F. Effects of vitamin D3 in long‐term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT‐3, and NT‐4 implications. Nutrients. 2019;11(8):1–22. 10.3390/nu11081726.
    1. Sedaghat K, Yousefian Z, Vafaei AA, et al. Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav Brain Res. 2019;356:156–69.
    1. Eyles DW, Rogers F, Buller K, et al. Developmental vitamin D (DVD) deficiency in the rat alters adult behaviour independently of HPA function. Psychoneuroendocrinology. 2006;31(8):958–64.
    1. Momen NC, Plana‐Ripoll O, Agerbo E, et al. Association between mental disorders and subsequent medical conditions. N Engl J Med. 2020;382(18):1721–31.
    1. Revez JA, Lin T, Qiao Z, et al. Genome‐wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11(1):1647.
    1. Wu DM, Wen X, Han XR, et al. Relationship Between Neonatal Vitamin D at Birth and Risk of Autism Spectrum Disorders: the NBSIB Study. J Bone Miner Res. 2018;33(3):458–66.
    1. Schmidt RJ, Niu Q, Eyles DW, Hansen RL, Iosif AM. Neonatal vitamin D status in relation to autism spectrum disorder and developmental delay in the CHARGE case‐control study. Autism Res. 2019;12(6):976–88.
    1. Windham GC, Pearl M, Anderson MC, et al. Newborn vitamin D levels in relation to autism spectrum disorders and intellectual disability: A case‐control study in california. Autism Res. 2019;12(6):989–98.
    1. Saraf R, Morton SMB, Camargo CAJ, Grant CC. Global summary of maternal and newborn vitamin D status ‐ a systematic review. Matern Child Nutr. 2016. Oct;;12(4):647–68.

Source: PubMed

3
Abonnere