Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options

Małgorzata Sadowska, Beata Sarecka-Hujar, Ilona Kopyta, Małgorzata Sadowska, Beata Sarecka-Hujar, Ilona Kopyta

Abstract

Cerebral palsy (CP) is one of the most frequent causes of motor disability in children. According to the up-to-date definition, CP is a group of permanent disorders of the development of movement and posture, causing activity limitations that are attributed to non-progressive disturbances that occurred in the developing foetal or infant brain. The CP definition has evolved over time; the problem is aetiologically and clinically very heterogeneous. According to European data, the average frequency of CP is 2.08 per 1000 live births, but in the group of children born with a body weight below 1500 g, the frequency is 70 times higher when compared with the group of children with a body weight over 2500 g at birth. The risk factors for CP can be divided into pre-conception, prenatal, perinatal and postnatal ones. CP commonly co-exists with epilepsy, in particular drug-resistant epilepsy, but also with mental retardation, visual and hearing impairment, as well as feeding and behavioral disorders. The degree of motor problem varies from mild to very severe making the child totally dependent on caregivers. Cerebral palsy is divided into forms depending on the type of motor disorders which dominate the clinical presentation; the traditional classifications by Ingram and Hagberg have now been replaced by the Surveillance of Cerebral Palsy in Europe classification which divides CP into spastic, dyskinetic and ataxic forms. Although cerebral palsy is a clinical diagnosis, modern diagnostic imaging provides information that allows the division of the results of magnetic resonance imaging in children with cerebral palsy into five groups according to the magnetic resonance imaging classification system. Just as the clinical presentation and the factors predisposing for CP are very diverse, treatment is also a very complex problem. Modern treatment of spasticity includes both botulinum toxin therapies and surgical techniques, eg, rhizotomy. The authors present current views on definitions, risk factors, diagnostics and treatment of CP as well as comorbid problems, eg, drug-resistant epilepsy.

Keywords: CP; cerebral palsy; comorbidities; epilepsy; malnutrition; mental retardation; risk factors; treatment.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2020 Sadowska et al.

Figures

Figure 1
Figure 1
Potential risk factors for cerebral palsy. Data from references 18-23.
Figure 2
Figure 2
Selected examples of magnetic resonance imaging from own research are presented (MRI picture performed in Scanix (Katowice, Poland) presented by courtesy of center’s Head Dr Magdalena Machnikowska-Sokolowska): A.1 disorder of cortical formation; A.2 other maldevelopments; B.1 PVL; B.2 sequelae of Intraventricular haemorrhage (IVH) or periventricular haemorrhagic infarction; B.3 combination of PVL and IHV sequelae; C.1 basal ganglia/thalamus lesion; C.2 cortico-subcortical lesion; C.3 arterial infarction; D miscellaneous; E normal imaging. Abbreviations: MRI, magnetic resonance imaging; PVL, periventricular leukomalacia; IVH, intraventricular hemorrhage.

References

    1. Little WJ. The classic: hospital for the cure of deformities: course of lectures on the deformities of the human frame. 1843. Clin Orthop Relat Res. 2012;470(5):1252–1256. doi:10.1007/s11999-012-2302-y
    1. Mac Keith RC, Mackenzie I, Polani P. The Little Club. Memorandum on terminology and classification of “cerebral palsy”. Dev Med Child Neurol. 1959;1:27–35. doi:10.1111/j.1469-8749.1959.tb08073.x
    1. Bax M. Terminology and classification of cerebral palsy. Dev Med Child Neurol. 1964;6:295–307. doi:10.1111/j.1469-8749.1964.tb10791.x
    1. Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol. 1992;34(6):547–551. doi:10.1111/j.1469-8749.1992.tb11479.x
    1. Bax M, Goldstein M, Rosenbaum P, et al. Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47(8):571–576. doi:10.1017/S001216220500112X
    1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;109:8–14.
    1. Cans C, Dolk H, Platt MJ, Colver A, Prasauskiene A, Krageloh-Mann I; SCPE Collaborative group. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Supp. 2007;109:35–38. doi:10.1111/j.1469-8749.2007.tb12626.x
    1. Surveillance of Cerebral Palsy in Europe. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000;42:816–824. doi:10.1017/S0012162200001511
    1. Leach EL, Shevell M, Bowden K, Stockler-Ipsiroglu S, van Karnebeek CD. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J Rare Dis. 2014;9:197. doi:10.1186/s13023-014-0197-2
    1. Zouvelou V, Yubero D, Apostolakopoulou L, et al. The genetic etiology in cerebral palsy mimics: the results from a Greek tertiary care center. Eur J Paediatr Neurol. 2019;23(3):427–437. doi:10.1016/j.ejpn.2019.02.001
    1. Hakami WS, Hundallah KJ, Tabarki BM. Metabolic and genetic disorders mimicking cerebral palsy. Neurosciences (Riyadh). 2019;24(3):155–163. doi:10.17712/nsj.2019.3
    1. Pearson TS, Pons R, Ghaoui R, Sue CM. Genetic mimics of cerebral palsy. Mov Disord. 2019;34(5):625–636. doi:10.1002/mds.27655
    1. Surveillance of Cerebral Palsy in Europe. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44:633–640.
    1. Platt MJ, Cans C, Johnson A, et al. Trends in cerebral palsy among infants of very low birthweight (<1500g) or born prematurely (<32 weeks) in 16 European centres: a database study. Lancet. 2007;6(369):43–50.
    1. Himpens E, Van den Broeck C, Oostra A, Calders P, Vanhaesebrouck P. Prevalence, type, distribution and severity of cerebral palsy in relation to gestational age: a meta-analytic review. Dev Med Child Neurol. 2008;50(5):334–340. doi:10.1111/j.1469-8749.2008.02047.x
    1. Oskoui M, Coutinho F, Dykeman J, Jette N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–519. doi:10.1111/dmcn.12080
    1. Sellier E, Platt MJ, Andersen GL, Krageloh-Mann I, De La Cruz J, Cans C, on behalf of Surveillance of Cerebral Palsy Network. Decreasing prevalence in cerebral palsy: a multi- site European population- based study, 1980 to 2003. Dev Med Child Neurol. 2016;58(1):85–92. doi:10.1111/dmcn.12865
    1. Reddihough D, Collins KJ. The epidemiology and causes of cerebral palsy. Aust J Physiother. 2003;49(1):7–12. doi:10.1016/S0004-9514(14)60183-5
    1. Kułak W, Sobaniec W, Okurowska-Zawada B, Sienkiewicz D, Paszko-Patej G. Antenatal, intrapartum and neonatal risk factors for cerebral palsy in children in Podlaskie Province. Neurol Dziec. 2009;18(36):19–24.
    1. McIntyre S, Taitz D, Koegh J, Goldsmith S, Badawi N, Blair E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol. 2013;55:499–508. doi:10.1111/dmcn.12017
    1. Linsell L, Malouf R, Morris J, Kurinczuk JJ, Marlow N. Prognostic factors for cerebral palsy and motor impairment in children born very preterm or very low birthweight: a systematic review. Dev Med Child Neurol. 2016;58:554–569. doi:10.1111/dmcn.12972
    1. Ahlin K, Himmelmann K, Hagberg G, et al. Non-infectious risk factors for different types of cerebral palsy in term-born babies: a population-based, case-control study. BJOG. 2013;120(6):724–731. doi:10.1111/1471-0528.12164
    1. Goldsmith S, McIntyre S, Badawi N, Hansen M. Cerebral palsy after assisted reproductive technology: a cohort study. Dev Med Child Neurol. 2018;60(1):73–80. doi:10.1111/dmcn.13577
    1. Balf CL, Ingram TTS. Problems in the classification of cerebral palsy in childhood. Br Med J. 1955;16:163–166. doi:10.1136/bmj.2.4932.163
    1. Hagberg G, Hagberg B, Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970. III. The importance of fetal deprivation of supply. Acta Paediatr Scand. 1976;65:403–408. doi:10.1111/j.1651-2227.1976.tb04906.x
    1. Palisano RJ, Cameron D, Resenbaum PL, Walter SD, Rusell D. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48(6):424–428. doi:10.1017/S0012162206000934
    1. Palisano RJ, Rosenbaum PL, Bartlett D, Livingston MH. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol. 2008;50(10):744–750. doi:10.1111/j.1469-8749.2008.03089.x
    1. Elvrum AK, Andersen GL, Himmelmann K, et al. Bimanual Fine Motor Function (BFMF) classification in children with cerebral palsy: aspects of construct and content validity. Phys Occup Ther Pediatr. 2016;36(1):1–16. doi:10.3109/01942638.2014.975314
    1. Ohrvall AM, Krumlinde-Sundhomr L, Eliasson AC. The stability of manual ability classification system over time. Dev Med Child Neurol. 2014;56(2):185–189. doi:10.1111/dmcn.12348
    1. Himmelmann K, Horber V, De la Cruz J, et al; SCPE Working Group. MRI classification system (MRICS) for children with cerebral palsy: development, reliability and recommendations. Dev Med Child Neurol. 2017;59(1):57–64. doi:10.1111/dmcn.13166
    1. Hoon AH Jr, Stashinko EE, Nagae LM, et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol. 2009;51(9):697–704. doi:10.1111/j.1469-8749.2009.03306.x
    1. Jiang H, Li X, Jin C, et al. Early diagnosis of spastic cerebral palsy in infants with periventricular white matter injury using diffusion tensor imaging. Am J Neuroradiol. 2019;40(1):162–168. doi:10.3174/ajnr.A5914
    1. Papadelis C, Ahtam B, Feldman HA, et al. Altered white matter connectivity associated with intergyral brain disorganization in hemiplegic cerebral palsy. Neuroscience. 2019;399:146–160. doi:10.1016/j.neuroscience.2018.12.028
    1. Nagae LM, Hoon AH Jr, Stashinko E, et al. Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. Am J Neuroradiol. 2007;28(7):1213–1222. doi:10.3174/ajnr.A0534
    1. Trivedi R, Agarwal S, Shah V, et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. Neuroradiology. 2010;52(8):759–765. doi:10.1007/s00234-010-0703-8
    1. Hoon AH Jr, Lawrie WT Jr, Melhem ER, et al. Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology. 2002;59(5):752–756. doi:10.1212/wnl.59.5.752
    1. Jiang H, Liu H, He H, et al. Specific white matter lesions related to motor dysfunction in spastic cerebral palsy: a meta-analysis of diffusion tensor imaging studies. J Child Neurol. 2020;35(2)::146–154. doi:10.1177/0883073819879844
    1. Papadelis C, Butler EE, Rubenstein M, et al. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts. Neuroimage Clin. 2017;17:198–212. doi:10.1016/j.nicl.2017.10.021
    1. Papadelis C, Ahtam B, Nazarova M, et al. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study. Front Hum Neurosci. 2014;8:725. doi:10.3389/fnhum.2014.00725
    1. Papadelis C, Kaye H, Shore B, Snyder B, Grant PE, Rotenberg A. Maturation of corticospinal tracts in children with hemiplegic cerebral palsy assessed by diffusion tensor imaging and transcranial magnetic stimulation. Front Hum Neurosci. 2019;13:254. doi:10.3389/fnhum.2019.00254
    1. Bosanquet M, Copeland L, Ware R, Boyd R. A systematic review of tests to predict cerebral palsy in young children. Dev Med Child Neurol. 2013;55(5):418–426. doi:10.1111/dmcn.12140
    1. Granild- Jensen JB, Rackauskaite G, Flachs EM, Uldall P. Predictors for early diagnosis of cerebral palsy from national registry data. Dev Med Child Neurol. 2015;57(10):931–935. doi:10.1111/dmcn.12760
    1. Novak I, Morgan C, Adde L, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897–907. doi:10.5167/uzh-149328
    1. Smithers-Sheedy H, Badawi N, Blair E, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56:323–328. doi:10.1111/dmcn.12262
    1. Kwong KL, Wong SK, Kwan T. Epilepsy in children with cerebral palsy. Pediatr Neurol. 1998;19(1):31–36. doi:10.1016/S0887-8994(98)00011-3
    1. Gururaj AK, Sztriha L, Bener A, Dawodu A, Aepen V. Epilepsy in children with cerebral palsy. Seizure. 2003;12(2):110–114. doi:10.1016/S1059131102002558
    1. Kułak W, Sobaniec W. Risk factors and prognosis of epilepsy in children with cerebral palsy in north-eastern Poland. Brain Dev. 2003;25(7):499–506. doi:10.1016/S0387-7604(03)00040-8
    1. Mert GG, Incecik F, Altunbasak S, et al. Factors affecting epilepsy development and epilepsy prognosis in cerebral palsy. Pediatr Neurol. 2011;45(2):89–94. doi:10.1016/j.pediatrneurol.2011.03.001
    1. Wallace SJ. Epilepsy in cerebral palsy. Dev Med Child Neurol. 2001;43(10):713–717. doi:10.1111/j.1469-8749.2001.tb00147.x
    1. Bruck I, Antoniuk SA, Spessatto A, Schmitt de Bem R, Hausberger R, Pacheco CG. Epilepsy in children with cerebral palsy. Arq Neuropsiquiatr. 2001;59(1):35–39. doi:10.1590/S0004-282X2001000100008
    1. Singhi P, Jagirdar S, Khandelwai N, Malhi P. Epilepsy in cerebral palsy. J Child Neurol. 2003;18(3):174–179. doi:10.1177/08830738030180030601
    1. Zafeiriou DI, Kontopoulos EE, Tsikoulas I. Characteristics and prognosis of epilepsy in children with cerebral palsy. J Child Neurol. 1999;14(5):289–294. doi:10.1177/088307389901400504
    1. Sellier E, Uldall P, Calado E, et al. Epilepsy and cerebral palsy: characteristics and trends in children born in 1976-1998. Eur J Paediatr Neurol. 2012;16(1):48–55. doi:10.1016/j.ejpn.2011.10.003
    1. Donner EJ, Camfield P, Brooks L, et al. Understanding death in children with epilepsy. Pediatr Neurol. 2017;70:7–15. doi:10.1016/j.pediatrneurol.2017.01.011
    1. Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death in epilepsy: epidemiology, mechanisms and prevention. Lancet Neurol. 2016;15(10):1075–1088. doi:10.1016/S1474-4422(16)30158-2
    1. Shankar R, Donner EJ, McLean B, Nashef L, Tomson T. Sudden unexpected death in epilepsy (SUDEP): what every neurologist should know. Epileptic Disord. 2017;19(1):1–9. doi:10.1684/epd.2017.0891
    1. Harden C, Tomson R, Gloss D, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88:1674–1680. doi:10.1212/WNL.0000000000003685
    1. Reid SM, Meehan EM, Arnup SJ, Reddihough DS. Intellectual disability in cerebral palsy: a population-based retrospective study. Dev Med Child Neurol. 2018;60(7):687–694. doi:10.1111/dmcn.13773
    1. Türkoğlu G, Türkoğlu S, Çelik C, Uçan H. Intelligence, functioning and related factors in children with cerebral palsy. Noro Psikiyatr Ars. 2017;54(1):33–37. doi:10.5152/npa.2015.12676
    1. Sigurdardottir S, Eiriksdottir A, Gunnarsdottir E, Meintema M, Arnadottir U, Vik T. Cognitive profile in young Icelandic children with cerebral palsy. Dev Med Child Neurol. 2008;50(5):357–362. doi:10.1111/j.1469-8749.2008.02046.x
    1. Gajewska E, Sobieska M, Samborski W.Associations between manual abilities, gross motor function, epilepsy, and mental capacity in children with cerebral palsy. Iran J Child Neurol. 2014;8(2):45–52.
    1. Trivic I, Hojsak I. Evaluation and treatment of malnutrition and associated gastrointestinal complications in children with cerebral palsy. Pediatr Gastroenterol Hepatol Nutr. 2019;22(2):122–131. doi:10.5223/pghn.2019.22.2.122
    1. Tamilia E, Taffoni F, Formica D, et al. Technological solutions and main indices for the assessment of newborns’ nutritive sucking: a review. Sensors (Basel). 2014;14(1):634–658. doi:10.3390/s140100634
    1. Tamilia E, Parker MS, Rocchi M, et al. Nutritive sucking abnormalities and brain microstructural abnormalities in infants with established brain injury: a pilot study. J Perinatol. 2019;39(11):1498–1508. doi:10.1038/s41372-019-0479-6
    1. Karim T, Jahan I, Dossetor R, et al. Nutritional status of children with cerebral palsy- findings from prospective hospital- based surveillance in vietnam indicate a need for action. Nutrients. 2019;11(9):E2132. doi:10.3390/nu11092132
    1. Kuperminc MN, Stevenson RD. Growth and nutrition disorders in children with cerebral palsy. Dev Disabil Res Rev. 2008;14:2. doi:10.1002/ddrr.14
    1. Benfer KA, Weir KA, Bell KL, et al. Oropharyngeal dysphagia and cerebral palsy. Pediatrics. 2017;140(6):e20170731. doi:10.1542/peds.2017-0731
    1. Sullivan PB, Lambert B, Rose M, Ford-Adams M, Johnson A, Griffiths P. Prevalence and severity of feeding and nutritional problems in children with neurological impairment: oxford feeding study. Dev Med Child Neurol. 2000;42(10):674–680. doi:10.1111/j.1469-8749.2000.tb00678.x
    1. Darling-White M, Sakash A, Hustad KC. Characteristics of speech rate in children with cerebral palsy: a longitudinal study. J Speech Lang Hear Res. 2018;61:2502–2515. doi:10.1044/2018_JSLHR-S-17-0003
    1. Nordberg A, Miniscalco C, Lohmander A, Himmelmann K. Speech problems affect more than one in two children with cerebral palsy: Swedish population- based study. Acta Paediatr. 2013;102:161–166. doi:10.1111/apa.12076
    1. Andersen GL, Irgens LM, Haagaas I, Skranes JS, Meberg AE, Vik T. Cerebral palsy in Norway: prevalence, subtypes and severity. Eur J Paediatr Neurol. 2008;12:4–13. doi:10.1016/j.ejpn.2007.05.001
    1. Trabacca A, Vespino T, Di Liddo A, Russo L. Multidisciplinary rehabilitation for patients with cerebral palsy: improving long-term care. J Multidiscip Healthc. 2016;9:455–462. doi:10.2147/JMDH.S88782
    1. Mundkur N. Neuroplasticity in children. Indian J Pediatr. 2005;72(10):855–857. doi:10.1007/bf02731115
    1. Reid LB, Rose SE, Boyd RN. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol. 2015;11(7):390–400. doi:10.1038/nrneurol.2015.97
    1. Sterling C, Taub E, Davis D, et al. Structural neuroplastic change after constraint-induced movement therapy in children with cerebral palsy. Pediatrics. 2013;131:1664–1669. doi:10.1542/peds.2012-2051
    1. Klimont L. Principles of Bobath neuro-developmental therapy in cerebral palsy. Ortop Traumatol Rehabil. 2001;3(4):527–530.
    1. Yalcinkaya EY, Caglar NS, Tugcu B, Ronbaklar A. Rehabilitation outcomes of children with cerebral palsy. J Phys Ther Sci. 2014;26(2):285–289. doi:10.1589/jpts.26.285
    1. Lee KH, Park JW, Lee HJ, et al. Efficacy of intensive neurodevelopmental treatment for children with developmental delay, with or without cerebral palsy. Ann Rehabil Med. 2017;41(1):90–96. doi:10.5535/arm.2017.41.1.90
    1. Tekin F, Kavlak E, Cavlak U, Altug F. Effectiveness of neuro-developmental treatment (Bobath Concept) on postural control and balance in cerebral palsied children. J Back Musculoskelet Rehabil. 2018;31(2):397–403. doi:10.3233/BMR-170813
    1. Massagli TL. Spasticity and its management in children. Phys Med Rehabil Clin N Am. 1991;2(4):867–889. doi:10.1016/S1047-9651(18)30686-7
    1. Pin TW, Elmasry J, Lewis J. Efficacy of botulinum toxin A in children with cerebral palsy in gross motor function classification system levels IV and V: a systematic review. Dev Med Child Neurol. 2013;55(4):304–313. doi:10.1111/j.1469-8749.2012.04438.x
    1. Barwood S, Baillieu C, Boyd R, et al. Analgesic effects of botulinum toxin A: a randomized, placebo- controlled clinical trial. Dev Med Child Neurol. 2000;42(2):116–121. doi:10.1111/j.1469-8749.2000.tb00056.x
    1. Delgado MR, Hirtz D, Aisen M, et al. Report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review). Neurology. 2010;74:336–343. doi:10.1212/WNL.0b013e3181cbcd2f
    1. Chung CY, Chen CL, Wong AM. Pharmacotherapy of spasticity in children with cerebral palsy. J Formos Med Assoc. 2011;110(4):215–222. doi:10.1016/S0929-6646(11)60033-8
    1. Balaban B, Tok F, Tan A, Matthews D. Botulinum toxin a treatment in children with cerebral palsy: its effects on walking and energy expenditure. Am J Phys Med Rehabil. 2012;91(1):53–64. doi:10.1097/PHM.0b013e31823caae1
    1. Lowing K, Thews K, Haglund-Akerlind Y, Gutierrez-Farewik EM. Effects of botulinum toxin-A and goal-directed physiotherapy in children with cerebral palsy GMFCS levels I & II. Phys Occup Ther Pediatr. 2017;37(3):268–282. doi:10.3109/01942638.2016.1150384
    1. Overgard TM, Kjaersgaard-Hansen L, Soe M, Illum NO. Positive experience with intrathecal baclofen treatment in children with severe cerebral palsy. Dan Med J. 2015;62(1):A4999.
    1. Wang KK, Munger ME, Chen BP-J, Novacheck TF. Selective dorsal rhizotomy in ambulant children with cerebral palsy. J Child Orthop. 2018;12(5):413–427. doi:10.1302/1863-2548.12.180123
    1. Msaddi AK, Mazroue AR, Shahwan S, et al. Microsurgical selective peripheral neurotomy in the treatment of spasticity in cerebral-palsy children. Stereotact Funct Neurosurg. 1997;69:251–258. doi:10.1159/000099884
    1. Romano C, van Wynckel M, Huls J, et al. European society for paediatric gastroenterology, hepatology and nutrition guidelines for the evaluation and treatment of gastrointestinal and nutritional complications in children with neurological impairment. J Pediatr Gastroenterol Nutr. 2017;65:242–264. doi:10.1097/MPG.0000000000001646
    1. Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/dmcn.12246
    1. Mazurkiewicz- Bełdzińska M, Szmuda M, Matheisel A, Wendorff J, Gniadkowska-Nowakowska A. Epilepsy in cerebral palsy. Comprehensive questionnaire research performed in three different provinces in Poland. Neurol Dziec. 2007;16(32):35–38.
    1. LaRiviere MJ, Gross RE. Stereotactic laser ablation for medically intractable epilepsy: the next generation of minimally invasive epilepsy surgery. Front.Surg. 2016;3:64. doi:10.3389/fsurg.2016.00064
    1. Bandt SK, Leuthardt EC. minimally invasive neurosurgery for epilepsy using stereotactic MRI guidance. Neurosurg Clin N Am. 2016;27(1):51–58. doi:10.1016/j.nec.2015.08.005
    1. Kovac S, Vakharia VN, Scott C, Diehl B. Invasive epilepsy surgery evaluation. Seizure. 2017;44:125–136. doi:10.1016/j.seizure.2016.10.016
    1. Camp C, Smithson WH, Bunker M, Burke T, Hughes D. Impact of vagus nerve stimulation on secondary care burden in children and adults with epilepsy: review of routinely collected hospital data in England. Epilepsy Behav. 2015;52(Pt A):68–73. doi:10.1016/j.yebeh.2015.08.026
    1. Qualmann KJ, Spaeth CG, Myers MF, et al. Pediatric epilepsy surgery: the prognostic value of central nervous system comorbidities in patients and their families. Child Neurol. 2017;32(5):467–474. doi:10.1177/0883073816685653
    1. Rho JM. How does the ketogenic diet induce anti-seizure effects? Neurosci Lett. 2017;637:4–10. doi:10.1016/j.neulet.2015.07.034
    1. Martin K, Jackson CF, Lewy RG, Cooper PN. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2016;2. doi:10.1002/14651858.CD001903.pub3
    1. Jekovec-Vrhovsek M. Epilepsy in children with cerebral palsy. East J Med. 2012;17:166–170.
    1. Kossoff EH, Zupec-Kania BA, Auvin S, et al.; the Practice Committee of the Child Neurology Society. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):174–192. doi:10.1002/epi4.12225.

Source: PubMed

3
Abonnere