Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis

Harrisham Kaur, Chandrani Bose, Sharmila S Mande, Harrisham Kaur, Chandrani Bose, Sharmila S Mande

Abstract

The link between gut microbiome and brain is being slowly acknowledged due to the speculated role of resident gut microbial community in altering the functions of gut-brain axis (GBA). Recently, a number of microbial metabolites (referred to as neuro-active metabolites) produced through tryptophan metabolism have been suggested to influence the GBA. In view of this, the current study focuses on microbial tryptophan metabolism pathways which produce neuro-active metabolites. An in silico analysis was performed on bacterial genomes as well as publicly available gut microbiome data. The results provide a comprehensive catalog of the analyzed pathways across bacteria. The analysis indicates an enrichment of tryptophan metabolism pathways in five gut-associated phyla, namely, Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria. Further, five genera, namely, Clostridium, Burkholderia, Streptomyces, Pseudomonas, and Bacillus have been predicted to be enriched in terms of number of the analyzed tryptophan metabolism pathways, suggesting a higher potential of these bacterial groups to metabolize tryptophan in gut. Analysis of available microbiome data corresponding to gut samples from patients of neurological diseases and healthy individuals suggests probable association of different sets of tryptophan metabolizing bacterial pathways with the etiology of different diseases. The insights obtained from the present study are expected to provide directions toward designing of microbiome based diagnostic and therapeutic approaches for neurological diseases/disorders.

Keywords: genome mining; gut microbiome; gut-brain axis; in silico; neurological disorders; tryptophan metabolism.

Copyright © 2019 Kaur, Bose and Mande.

Figures

FIGURE 1
FIGURE 1
Schematic representation of tryptophan metabolism pathways leading to production of neuro-active compounds. The pathways correspond to metabolism of tryptophan (indicated in green font inside an oval) for production of six neuro-active compounds namely, indole, tryptamine, kynurenine, quinolinate, indole acetic acid, and indole propionic acid. These six compounds have been indicated in green font. The intermediate compounds of the pathways have been represented in black font. For each pathway, the EC numbers and the functional domains of the participating enzymes have been indicated in blue and red colors, respectively.
FIGURE 2
FIGURE 2
Tryptophan metabolism pathways for neuro-active compound production across bacterial phyla. Distribution of six neuro-active compound production pathways across bacterial phyla comprising of completely sequenced bacterial genomes. Each cell represents the proportion of strains predicted to harbor a pathway for a particular phylum.
FIGURE 3
FIGURE 3
The count of gut bacteria at phyla, genera, and strain levels predicted to possess each of the six analyzed pathways. The pathways pertain to metabolism of tryptophan (indicated in black font inside an oval) for production of six neuro-active compounds namely, indole, tryptamine, kynurenine, quinolinate, indole acetic acid, and indole propionic acid. These six compounds have been indicated in green font. The intermediate compounds of the pathways have been represented in black font. The bar plot depicting phyla-count, genera-count and strain-count for each pathway has been placed behind or below the corresponding neuro-active compound.
FIGURE 4
FIGURE 4
Tryptophan metabolism pathways for neuro-active compound production in bacterial genera found in gut. Distribution of six neuro-active compound production pathways across genera comprising of completely sequenced bacterial genomes found in human gut. Each cell represents “SCORBPEO” (Score for Bacterial Production of Neuro-active Compounds) value corresponding to the pathways in these genera. “SCORBPEO” indicates the relative capabilities for production of a particular neuro-active compound of any genus, evaluated based on the number of pathway containing strains, the database size of the respective genus, and enrichment of the pathway in gut-associated strains of the genus.
FIGURE 5
FIGURE 5
Distribution of tryptophan transporters in gut bacteria. (A) Pie-chart depicting the proportion of indole producing gut bacteria predicted to have tryptophan transporters versus those not utilizing the same. (B) Venn diagram representing the distribution profile of three known transporters namely, TnaB, Mtr, and AroP in gut bacteria. (C) Heat-map showing the proportion of strains in each of the five gut bacterial genera predicted to utilize the three tryptophan transporters (TnaB, Mtr, and AroP).
FIGURE 6
FIGURE 6
Schematic representation of the insights obtained from genomic analysis in context of tryptophan metabolism pathways in gut bacteria and their probable connection to brain. The six neuro-active compounds produced through bacterial tryptophan metabolism are depicted using various shapes as shown in the legend provided inside the figure. For each compound, the top three genera with respect to the “SCORBPEO” value are shown within rectangles having solid borders. For example, bacterial genera such as Klebsiella, Staphylococcus, Ralstonia, etc., produce indole acetic acid (IAA) in the large intestine through tryptophan metabolism. Probable ways by which each of the six compounds may alter the functioning of GBA (as collated from literature) have been indicated by yellow rectangles having dotted border. For instance, IAA may affect the interaction between gut and brain by acting as inter-cellular signaling molecule and immune system modulator. Apart from such mechanisms mediated by tryptophan metabolism products, sequestration of tryptophan by gut bacteria may have a direct impact on brain tryptophan level, which in turn can affect brain function.
FIGURE 7
FIGURE 7
Tryptophan metabolism pathways in differentially abundant genera in gut microbiome of patients suffering from neurological diseases and healthy individuals. Each panel corresponds to a set of microbiome data obtained from patients of a neurological disease and matched healthy individuals. The genera differentially enriched in diseased cohorts have been shown with orange bars, while those differentially abundant in healthy cohorts have been shown with cyan bars. The pathways that have been predicted in differentially abundant genera in diseased or healthy individuals have been represented by Sankey diagrams. The width of the pathway-genus association represents the “SCORBPEO” value of the genus for the respective pathway.

References

    1. Agus A., Planchais J., Sokol H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23 716–724. 10.1016/j.chom.2018.05.003
    1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2
    1. Anand S., Mande S. S. (2018). Diet, microbiota and gut-lung connection. Front. Microbiol. 9:2147. 10.3389/fmicb.2018.02147
    1. Baothman O. A., Zamzami M. A., Taher I., Abubaker J., Abu-Farha M. (2016). The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 15:108. 10.1186/s12944-016-0278-4
    1. Bauer D. F. (1972). Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67 687–690. 10.1080/01621459.1972.10481279
    1. Becker C., Neurath M. F., Wirtz S. (2015). The intestinal microbiota in inflammatory bowel disease. ILAR J. 56 192–204. 10.1093/ilar/ilv030
    1. Bedarf J. R., Hildebrand F., Goeser F., Bork P., Wüllner U. (2019). The gut microbiome in Parkinson’s disease. Nervenarzt 90 160–166. 10.1007/s00115-018-0601-6
    1. Belkaid Y., Hand T. W. (2014). Role of the microbiota in immunity and inflammation. Cell 157 121–141. 10.1016/j.cell.2014.03.011
    1. Bendheim P. E., Poeggeler B., Neria E., Ziv V., Pappolla M. A., Chain D. G. (2002). Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J. Mol. Neurosci. 19 213–217. 10.1007/s12031-002-0036-0
    1. Bhattarai Y., Williams B. B., Battaglioli E. J., Whitaker W. R., Till L., Grover M., et al. (2018). Gut microbiota-produced tryptamine activates an epithelial g-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23:775-785.e5. 10.1016/j.chom.2018.05.004
    1. Biaggini K., Barbey C., Borrel V., Feuilloley M., Déchelotte P., Connil N. (2015). The pathogenic potential of Pseudomonas fluorescens MFN1032 on enterocytes can be modulated by serotonin, substance P and epinephrine. Arch. Microbiol. 197 983–990. 10.1007/s00203-015-1135-y
    1. Bortolotti P., Hennart B., Thieffry C., Jausions G., Faure E., Grandjean T., et al. (2016). Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship. BMC Microbiol. 16:137. 10.1186/s12866-016-0756-x
    1. Branton W. G., Ellestad K. K., Maingat F., Wheatley B. M., Rud E., Warren R. L., et al. (2013). Brain microbial populations in HIV/AIDS: α-Proteobacteria predominate independent of host immune status. PLoS One 8:e54673. 10.1371/journal.pone.0054673
    1. Carabotti M., Scirocco A., Maselli M. A., Severi C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 28 203–209.
    1. Catena-Dell’Osso M., Rotella F., Dell’Osso A., Fagiolini A., Marazziti D. (2013). Inflammation, serotonin and major depression. Curr. Drug Targets 14 571–577. 10.2174/13894501113149990154
    1. Chyan Y. J., Poeggeler B., Omar R. A., Chain D. G., Frangione B., Ghiso J., et al. (1999). Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J. Biol. Chem. 274 21937–21942. 10.1074/jbc.274.31.21937
    1. Colabroy K. L., Begley T. P. (2005). Tryptophan catabolism: identification and characterization of a new degradative pathway. J. Bacteriol. 187 7866–7869. 10.1128/JB.187.22.7866-7869.2005
    1. Cryan J. F., Dinan T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13 701–712. 10.1038/nrn3346
    1. Dahmus J. D., Kotler D. L., Kastenberg D. M., Kistler C. A. (2018). The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J. Gastrointest. Oncol. 9 769–777. 10.21037/jgo.2018.04.07
    1. Dodd D., Spitzer M. H., Van Treuren W., Merrill B. D., Hryckowian A. J., Higginbottom S. K., et al. (2017). A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551 648–652. 10.1038/nature24661
    1. Evrensel A., Ceylan M. E. (2015). The gut-brain axis: the missing link in depression. Clin. Psychopharmacol. Neurosci. 13 239–244. 10.9758/cpn.2015.13.3.239
    1. Farrow J. M., Pesci E. C. (2007). Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J. Bacteriol. 189 3425–3433. 10.1128/JB.00209-07
    1. Fukui S., Schwarcz R., Rapoport S. I., Takada Y., Smith Q. R. (1991). Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56 2007–2017. 10.1111/j.1471-4159.1991.tb03460.x
    1. Furukawa S., Usuda K., Abe M., Ogawa I. (2005). Effect of indole-3-acetic acid derivatives on neuroepithelium in rat embryos. J. Toxicol. Sci. 30 165–174. 10.2131/jts.30.165
    1. Gaffney T. D., da Costa e Silva O., Yamada T., Kosuge T. (1990). Indoleacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification. J. Bacteriol. 172 5593–5601. 10.1128/jb.172.10.5593-5601.1990
    1. Gagnière J., Raisch J., Veziant J., Barnich N., Bonnet R., Buc E., et al. (2016). Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22 501–518. 10.3748/wjg.v22.i2.501
    1. Galland L. (2014). The gut microbiome and the Brain. J. Med. Food 17 1261–1272. 10.1089/jmf.2014.7000
    1. Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., et al. (2018). Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol. 8:13. 10.3389/fcimb.2018.00013
    1. Geldenhuys W. J., Van der Schyf C. J. (2011). Role of serotonin in Alzheimer’s disease: a new therapeutic target? CNS Drugs 25 765–781. 10.2165/11590190-000000000-00000
    1. Gong F., Yanofsky C. (2003). A transcriptional pause synchronizes translation with transcription in the tryptophanase operon leader region. J. Bacteriol. 185 6472–6476. 10.1128/JB.185.21.6472-6476.2003
    1. Hill-Burns E. M., Debelius J. W., Morton J. T., Wissemann W. T., Lewis M. R., Wallen Z. D., et al. (2017). Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov. Disord. Off. J. Mov. Disord. Soc. 32 739–749. 10.1002/mds.26942
    1. Hoyles L., Snelling T., Umlai U.-K., Nicholson J. K., Carding S. R., Glen R. C., et al. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6:55. 10.1186/s40168-018-0439-y
    1. Hu M., Zhang C., Mu Y., Shen Q., Feng Y. (2010). Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50 362–368. 10.1007/s12088-011-0142-1
    1. Jaglin M., Rhimi M., Philippe C., Pons N., Bruneau A., Goustard B., et al. (2018). Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front. Neurosci. 12:216. 10.3389/fnins.2018.00216
    1. Jellet J. J., Forrest T. P., Macdonald I. A., Marrie T. J., Holdeman L. V. (1980). Production of indole-3-propanoic acid and 3-(p-hydroxyphenyl)propanoic acid by Clostridium sporogenes: a convenient thin-layer chromatography detection system. Can. J. Microbiol. 26 448–453. 10.1139/m80-074
    1. Jenkins T. A., Nguyen J. C. D., Polglaze K. E., Bertrand P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8:E56. 10.3390/nu8010056
    1. Kałużna-Czaplińska J., Jóźwik-Pruska J., Chirumbolo S., Bjørklund G. (2017). Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab. Brain Dis. 32 1585–1593. 10.1007/s11011-017-0045-x
    1. Kanai M., Funakoshi H., Takahashi H., Hayakawa T., Mizuno S., Matsumoto K., et al. (2009). Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain 2:8. 10.1186/1756-6606-2-8
    1. Kaur H., Das C., Mande S. S. (2017). In silico analysis of putrefaction pathways in bacteria and its implication in Colorectal Cancer. Front. Microbiol. 8:2166. 10.3389/fmicb.2017.02166
    1. Kelly J. R., Kennedy P. J., Cryan J. F., Dinan T. G., Clarke G., Hyland N. P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9:392. 10.3389/fncel.2015.00392
    1. Kirby T. O., Ochoa-Repáraz J. (2018). The gut microbiome in multiple sclerosis: a potential therapeutic avenue. Med. Sci. 6:E69. 10.3390/medsci6030069
    1. Knecht L. D., O’Connor G., Mittal R., Liu X. Z., Daftarian P., Deo S. K., et al. (2016). Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine 9 161–169. 10.1016/j.ebiom.2016.05.037
    1. Kuhar M. J., Couceyro P. R., Lambert P. D. (1999). Biosynthesis of Catecholamines. Basic Neurochem. Mol. Cell. Med. Asp, 6th Edn Available at: [accessed June 17, 2019].
    1. Kunze W. A., Mao Y.-K., Wang B., Huizinga J. D., Ma X., Forsythe P., et al. (2009). Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J. Cell. Mol. Med. 13 2261–2270. 10.1111/j.1582-4934.2009.00686.x
    1. Kurnasov O., Goral V., Colabroy K., Gerdes S., Anantha S., Osterman A. (2003a). NAD Biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria (2003). Chem. Biol. 10 1195–1204. 10.1016/j.chembiol.2003.11.011
    1. Kurnasov O., Jablonski L., Polanuyer B., Dorrestein P., Begley T., Osterman A. (2003b). Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol. Lett. 227 219–227. 10.1016/S0378-1097(03)00684-0
    1. Kushak R. I., Winter H. S., Buie T. M., Cox S. B., Phillips C. D., Ward N. L. (2017). Analysis of the duodenal microbiome in autistic individuals: association with carbohydrate digestion. J. Pediatr. Gastroenterol. Nutr. 64 e110–e116. 10.1097/MPG.0000000000001458
    1. Lee J.-H., Lee J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34 426–444. 10.1111/j.1574-6976.2009.00204.x
    1. Leinonen R., Sugawara H., Shumway M. (2011). The sequence read archive. Nucleic Acids Res. 39 D19–D21. 10.1093/nar/gkq1019
    1. Li G., Young K. D. (2013). Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiol. Read. Engl. 159 402–410. 10.1099/mic.0.064139-0
    1. Lima W. C., Varani A. M., Menck C. F. M. (2009). NAD biosynthesis evolution in bacteria: lateral gene transfer of kynurenine pathway in xanthomonadales and flavobacteriales. Mol. Biol. Evol. 26 399–406. 10.1093/molbev/msn261
    1. Lugo-Huitrón R., Ugalde Muñiz P., Pineda B., Pedraza-Chaverrí J., Ríos C., Pérez-de la Cruz V. (2013). Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Longev. 2013:104024. 10.1155/2013/104024
    1. Ma N., Ma X. (2019). Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf. 18 221–242. 10.1111/1541-4337.12401
    1. Martin C. R., Osadchiy V., Kalani A., Mayer E. A. (2018). The brain-gut-microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6 133–148. 10.1016/j.jcmgh.2018.04.003
    1. Mayer E. A., Knight R., Mazmanian S. K., Cryan J. F., Tillisch K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34 15490–15496. 10.1523/JNEUROSCI.3299-14.2014
    1. Ney D. M., Murali S. G., Stroup B. M., Nair N., Sawin E. A., Rohr F., et al. (2017). Metabolomic changes demonstrate reduced bioavailability of tyrosine and altered metabolism of tryptophan via the kynurenine pathway with ingestion of medical foods in phenylketonuria. Mol. Genet. Metab. 121 96–103. 10.1016/j.ymgme.2017.04.003
    1. Nikiforov A., Kulikova V., Ziegler M. (2015). The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50 284–297. 10.3109/10409238.2015.1028612
    1. O’Mahony S. M., Clarke G., Borre Y. E., Dinan T. G., Cryan J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277 32–48. 10.1016/j.bbr.2014.07.027
    1. Oxenkrug G. (2013). Serotonin – kynurenine hypothesis of depression: historical overview and recent developments. Curr. Drug Targets 14 514–521. 10.2174/1389450111314050002
    1. Park J., Wang Q., Wu Q., Mao-Draayer Y., Kim C. H. (2019). Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci. Rep. 9 8837. 10.1038/s41598-019-45311-y
    1. Parker A., Fonseca S., Carding S. R. (2019). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 0 1–23. 10.1080/19490976.2019.1638722
    1. Patten C. L., Blakney A. J. C., Coulson T. J. D. (2013). Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 39 395–415. 10.3109/1040841X.2012.716819
    1. Pulikkan J., Maji A., Dhakan D. B., Saxena R., Mohan B., Anto M. M., et al. (2018). Gut microbial dysbiosis in indian children with autism spectrum disorders. Microb. Ecol. 76 1102–1114. 10.1007/s00248-018-1176-2
    1. Pulikkan J., Mazumder A., Grace T. (2019). Role of the gut microbiome in autism spectrum disorders. Adv. Exp. Med. Biol. 1118 253–269. 10.1007/978-3-030-05542-4_13
    1. Puurunen J., Sulkama S., Tiira K., Araujo C., Lehtonen M., Hanhineva K., et al. (2016). A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs. Behav. Brain Funct. 12:27. 10.1186/s12993-016-0112-1
    1. Reigstad C. S., Salmonson C. E., Rainey J. F., Szurszewski J. H., Linden D. R., Sonnenburg J. L., et al. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29 1395–1403. 10.1096/fj.14-259598
    1. Rizzatti G., Lopetuso L. R., Gibiino G., Binda C., Gasbarrini A. (2017). Proteobacteria: a common factor in human diseases. BioMed. Res. Int. 2017:7. 10.1155/2017/9351507
    1. Roager H. M., Licht T. R. (2018). Microbial tryptophan catabolites in health and disease. Nat. Commun. 9:3294. 10.1038/s41467-018-05470-4
    1. Rogers G. B., Keating D. J., Young R. L., Wong M.-L., Licinio J., Wesselingh S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21 738–748. 10.1038/mp.2016.50
    1. Sasaki-Imamura T., Yano A., Yoshida Y. (2010). Production of Indole from l-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl. Environ. Microbiol. 76 4260–4268. 10.1128/AEM.00166-10
    1. Scheperjans F., Aho V., Pereira P. A. B., Koskinen K., Paulin L., Pekkonen E., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. Off. J. Mov. Disord. Soc. 30 350–358. 10.1002/mds.26069
    1. Schmieder R., Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinforma. Oxf. Engl. 27 863–864. 10.1093/bioinformatics/btr026
    1. Schütz A., Golbik R., Tittmann K., Svergun D. I., Koch M. H. J., Hübner G., et al. (2003). Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270 2322–2331. 10.1046/j.1432-1033.2003.03602.x
    1. Schwarcz R., Bruno J. P., Muchowski P. J., Wu H.-Q. (2012). Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13 465–477. 10.1038/nrn3257
    1. Shen Y., Xu J., Li Z., Huang Y., Yuan Y., Wang J., et al. (2018). Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr. Res. 197 470–477. 10.1016/j.schres.2018.01.002
    1. Shreiner A. B., Kao J. Y., Young V. B. (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31 69–75. 10.1097/MOG.0000000000000139
    1. Snell E. E. (1975). Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas Mol. Biol. 42 287–333. 10.1002/9780470122877.ch6
    1. Spaepen S., Vanderleyden J., Remans R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31 425–448. 10.1111/j.1574-6976.2007.00072.x
    1. Stefanko D. P., Barrett R. M., Ly A. R., Reolon G. K., Wood M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. U.S.A. 106 9447–9452. 10.1073/pnas.0903964106
    1. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., et al. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5:24. 10.1186/s40168-017-0242-1
    1. Vecsey C. G., Hawk J. D., Lattal K. M., Stein J. M., Fabian S. A., Attner M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. Off. J. Soc. Neurosci. 27 6128–6140. 10.1523/JNEUROSCI.0296-07.2007
    1. Waclawiková B., El Aidy S. (2018a). Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals 11:E63. 10.3390/ph11030063
    1. Waclawiková B., El Aidy S. (2018b). Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharm. Basel Switz. 11:E63. 10.3390/ph11030063
    1. Wang B., Yao M., Longxian L., Zongxin L., Lanjuan L. (2017). The human microbiota in health and disease. Engineering 3 71–82. 10.1016/J.ENG.2017.01.008
    1. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/AEM.00062-07
    1. Wehrmann A., Morakkabati S., Krämer R., Sahm H., Eggeling L. (1995). Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. J. Bacteriol. 177 5991–5993. 10.1128/jb.177.20.5991-5993.1995
    1. Wexler H. M. (2007). Bacteroides: the Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 20 593–621. 10.1128/CMR.00008-07
    1. Wikoff W. R., Anfora A. T., Liu J., Schultz P. G., Lesley S. A., Peters E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U..S..A. 106 3698–3703. 10.1073/pnas.0812874106
    1. Williams B. B., Van Benschoten A. H., Cimermancic P., Donia M. S., Zimmermann M., Taketani M., et al. (2014). Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16 495–503. 10.1016/j.chom.2014.09.001
    1. Zhao Y. (2010). Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61 49–64. 10.1146/annurev-arplant-042809-112308
    1. Zucchi R., Chiellini G., Scanlan T. S., Grandy D. K. (2006). Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 149 967–978. 10.1038/sj.bjp.0706948

Source: PubMed

3
Abonnere