Optic neuropathies: the tip of the neurodegeneration iceberg

Valerio Carelli, Chiara La Morgia, Fred N Ross-Cisneros, Alfredo A Sadun, Valerio Carelli, Chiara La Morgia, Fred N Ross-Cisneros, Alfredo A Sadun

Abstract

The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer's and Parkinson's disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure.

© The Author 2017. Published by Oxford University Press.

Figures

Figure 1
Figure 1
Immunostained cross-sections of human optic nerve from a healthy control and a LHON patient. (A–F) Formalin-fixed paraffin embedded human optic nerves, cross-sectional profiles, double-immunofluorescence (IF) labeling using confocal microscopy for myelin basic protein (MBP) coupled to TRITC (red) and neurofilament protein (NF) coupled to FITC (green), and counterstained with DAPI (blue) for nuclei. (A–C) Control optic nerve from a 70-year-old female. Panel A demonstrates labeling for MBP, panel B for NF, and panel C merges all three labels. Note the thickness of the myelin and the density of the axons. (D–F) LHON optic nerve from a 68-year-old female. Panel D represents labeling for MBP, panel E for NF, and panel F merges all three labels. Note the decreased number of axons with myelin thinning as illustrated at arrows. Electron microscopy cross-sectional profile of a LHON atrophic optic nerve. (G) Glutaraldehyde-fixed plastic embedded LHON optic nerve, cross-sectional profile, from a 74-year old female, high magnification transmission electron microscopy, demonstrating a decreased density of axons with examples of myelin thinning (arrows).
Figure 2
Figure 2
OCT evaluation of retinal nerve fiber layer and postmortem optic nerve cross-sections from LHON patients (A, B). Panel A shows RNFL thinning at OCT evaluation, more evident on the temporal quadrant, and relative sparing of the nasal quadrant of the optic nerve. Panel B shows an optic nerve cross-sectional profile displaying a classic profound depletion of axons on the temporal aspect of the optic nerve (asterisks) with relative preservation of axons in the supero-nasal sectors, yet with reduced fiber density. OCT evaluation of retinal nerve fiber layer and postmortem optic nerve cross-sections from Alzheimer patients (C, D). Panel C shows RNFL thinning at OCT evaluation, more evident on the supero-nasal quadrants, and sparing of the temporal quadrant of the optic nerve. Panel D shows an optic nerve cross-sectional profile displaying a depletion of axons on the supero-nasal sectors of the optic nerve (asterisks) with preservation of axons in the infero-temporal sectors.
Figure 3
Figure 3
Summary of the pathogenic mechanisms and future directions in optic nerve neurodegeneration. On the left, the structure of the optic nerve head, lamina cribrosa and post-laminar optic nerve is provided (schematic representation of the RGC is modified from Carelli et al., 2004, (1), with listed all mechanisms discussed involving the different cellular players, such as RGCs with dendrites and axons, oligodendrocytes with myelin sheet, and astrocytes. On the right, the future directions are illustrated in terms of eye imaging with new approaches, as well as the creation of iPSCs and derived organoids aimed at better understanding the pathogenic mechanism and setting therapeutic options.

References

    1. Carelli V., Ross-Cisneros F.N., Sadun A.A. (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Ret. Eye Res., 23, 53–89.
    1. Yu-Wai-Man P., Griffiths P.G., Chinnery P.F. (2011) Mitochondrial optic neuropathies -Disease mechanisms and therapeutic strategies. Prog. Ret. Eye Res., 30, 81–114.
    1. Von Graefe A. (1858) Ein ungewohnlicher Fall von hereditarer Amaurose. Arch. Ophthalmol., 4, 266–268.
    1. Leber T. (1871) Uber hereditare und congenital-angelegte Sehnervenleiden. Arch. Ophthalmol., 17, 249–291.
    1. Kjer P. (1959) Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmol. Scand., 37, 1–146.
    1. Yu-Wai-Man P., Griffiths P.G., Brown D.T., Howell N., Turnbull D.M., Chinnery P.F. (2003) The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet., 72, 333–339.
    1. Yu-Wai-Man P., Chinnery P.F. (2013) Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates. Ophthalmology, 120, 1712–1712.e1.
    1. Mascialino B., Leinonen M., Meier T. (2012) Meta-analysis of the prevalence of Leber hereditary optic neuropathy mtDNA mutations in Europe. Eur. J. Ophthalmol., 22, 461–465.
    1. Lenaers G., Hamel C., Delettre C., Amati-Bonneau P., Procaccio V., Bonneau D., Reynier P., Milea D. (2012) Dominant optic atrophy. Orphanet J. Rare Dis., 7, 46..
    1. Wallace D.C., Singh G., Lott M.T., Hodge J.A., Schurr T.G., Lezza A.M., Elsas L.J. 2nd, Nikoskelainen E.K. (1988) Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science, 242, 1427–1430.
    1. Alexander C., Votruba M., Pesch U.E., Thiselton D.L., Mayer S., Moore A., Rodriguez M., Kellner U., Leo-Kottler B., Auburger G.. et al. (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet., 26, 211–215.
    1. Delettre C., Lenaers G., Griffoin J.M., Gigarel N., Lorenzo C., Belenguer P., Pelloquin L., Grosgeorge J., Turc-Carel C., Perret E.. et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet., 26, 207–210.
    1. Maresca A., La Morgia C., Caporali L., Valentino M.L., Carelli V. (2013) The optic nerve: a “mito-window” on mitochondrial neurodegeneration. Mol. Cell Neurosci., 55, 62–76.
    1. Carelli V., Ross-Cisneros F.N., Sadun A.A. (2002) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem. Int., 40, 573–584.
    1. Porciatti V. (2015) Electrophysiological assessment of retinal ganglion cell function. Exp. Eye Res., 141, 164–170.
    1. Popescu D.P., Choo-Smith L.P., Flueraru C., Mao Y., Chang S., Disano J., Sherif S., Sowa M.G. (2011) Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys. Rev., 3, 155..
    1. Barboni P., Savini G., Valentino M.L., Montagna P., Cortelli P., De Negri A.M., Sadun F., Bianchi S., Longanesi L., Zanini M.. et al. (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology, 112, 120–126.
    1. Barboni P., Carbonelli M., Savini G., Foscarini B., Parisi V., Valentino M.L., Carta A., De Negri A., Sadun F., Zeviani M.. et al. (2010) OPA1 mutations associated with dominant optic atrophy influence optic nerve head size. Ophthalmology, 117, 1547–1553.
    1. Barboni P., Savini G., Cascavilla M.L., Caporali L., Milesi J., Borrelli E., La Morgia C., Valentino M.L., Triolo G., Lembo A.. et al. (2014) Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am. J. Ophthalmol., 158, 628–636.
    1. Borrelli E., Triolo G., Cascavilla M.L., La Morgia C., Rizzo G., Savini G., Balducci N., Nucci P., Giglio R., Darvizeh F.. et al. (2016) Changes in choroidal thickness follow the RNFL changes in Leber's hereditary optic neuropathy. Sci. Rep., 6, 37332..
    1. Barboni P., Carbonelli M., Savini G., Ramos Cdo V., Carta A., Berezovsky A., Salomao S.R., Carelli V., Sadun A.A. (2010) Natural history of Leber's hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology, 117, 623–627.
    1. Balducci N., Savini G., Cascavilla M.L., La Morgia C., Triolo G., Giglio R., Carbonelli M., Parisi V., Sadun A.A., Bandello F.. et al. (2016) Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy. Br. J. Ophthalmol., 100, 1232–1237.
    1. den Haan J., Verbraak F.D., Visser P.J., Bouwman F.H. (2017) Retinal thickness in Alzheimer's disease: a systematic review and meta-analysis. Alzheimers Dement. (Amst), 6, 162–170.
    1. Yu J.G., Feng Y.F., Xiang Y., Huang J.H., Savini G., Parisi V., Yang W.J., Fu X.A. (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One, 9, e85718..
    1. Bodis-Wollner I., Miri S., Glazman S. (2014) Venturing into the no-man's land of the retina in Parkinson's disease. Mov. Disord., 29, 15–22.
    1. Yu-Wai-Man P., Votruba M., Burté F., La Morgia C., Barboni P., Carelli V. (2016) A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol., 132, 789–806.
    1. Carelli V., La Morgia C., Iommarini L., Carroccia R., Mattiazzi M., Sangiorgi S., Farne S., Maresca A., Foscarini B., Lanzi L.. et al. (2007) Mitochondrial optic neuropathies: how two genomes may kill the same cell type? Biosci. Rep., 27, 173–184.
    1. Carelli V., La Morgia C., Valentino M.L., Barboni P., Ross-Cisneros F.N., Sadun A.A. (2009) Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim. Biophys. Acta, 1787, 518–528.
    1. Baracca A., Solaini G., Sgarbi G., Lenaz G., Baruzzi A., Schapira A.H., Martinuzzi A., Carelli V. (2005) Severe impairment of complex I-driven adenosine triphosphate synthesis in Leber hereditary optic neuropathy cybrids. Arch. Neurol., 62, 730–736.
    1. Beretta S., Mattavelli L., Sala G., Tremolizzo L., Schapira A.H., Martinuzzi A., Carelli V., Ferrarese C. (2004) 0 Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain, 127, 2183–2192.
    1. Floreani M., Napoli E., Martinuzzi A., Pantano G., De Riva V., Trevisan R., Bisetto E., Valente L., Carelli V., Dabbeni-Sala F. (2005) Antioxidant defences in cybrids harboring mtDNA mutations associated with Leber's hereditary optic neuropathy. FEBS J., 272, 1124–1135.
    1. Danielson S.R., Wong A., Carelli V., Martinuzzi A., Schapira A.H., Cortopassi G.A. (2002) Cells bearing mutations causing Leber's hereditary optic neuropathy are sensitized to Fas-Induced apoptosis. J. Biol. Chem., 277, 5810–5815.
    1. Ghelli A., Zanna C., Porcelli A.M., Schapira A.H., Martinuzzi A., Carelli V., Rugolo M. (2003) Leber's hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J. Biol. Chem., 278, 4145–4150.
    1. Zanna C., Ghelli A., Porcelli A.M., Martinuzzi A., Carelli V., Rugolo M. (2005) Caspase-independent death of Leber's hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis, 10, 997–1007.
    1. Olichon A., Landes T., Arnaune-Pelloquin L., Emorine L.J., Mils V., Guichet A., Delettre C., Hamel C., Amati-Bonneau P., Bonneau D.. et al. (2007) Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J. Cell. Physiol., 211, 423–430.
    1. Zanna C., Ghelli A., Porcelli A.M., Karbowski M., Youle R.J., Schimpf S., Wissinger B., Pinti M., Cossarizza A., Vidoni S.. et al. (2008) OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain, 131, 352–367.
    1. Agier V., Oliviero P., Lainé J., L'Hermitte-Stead C., Girard S., Fillaut S., Jardel C., Bouillaud F., Bulteau A.L., Lombès A. (2012) Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim. Biophys. Acta, 1822, 1570–1580.
    1. Burté F., Carelli V., Chinnery P.F., Yu-Wai-Man P. (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol., 11, 11–24.
    1. Davis A.F., Clayton D.A. (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol., 135, 883–893.
    1. Deglincerti A., Jaffrey S.R. (2012) Insights into the roles of local translation from the axonal transcriptome. Open Biol., 2, 120079..
    1. Li Z., Okamoto K., Hayashi Y., Sheng M. (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119, 873–887.
    1. Faits M.C., Zhang C., Soto F., Kerschensteiner D. (2016) Dendritic mitochondria reach stable positions during circuit development. Elife, 5, e11583.
    1. Andrews R.M., Griffiths P.G., Johnson M.A., Turnbull D.M. (1999) Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br. J. Ophthalmol., 83, 231–235.
    1. Bristow E.A., Griffiths P.G., Andrews R.M., Johnson M.A., Turnbull D.M. (2002) The distribution of mitochondrial activity in relation to optic nerve structure. Arch. Ophthalmol., 120, 791–796.
    1. Barron M.J., Griffiths P., Turnbull D.M., Bates D., Nichols P. (2004) The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br. J. Ophthalmol., 88, 286–290.
    1. Twig G., Elorza A., Molina A.J., Mohamed H., Wikstrom J.D., Walzer G., Stiles L., Haigh S.E., Katz S., Las G.. et al. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J., 27, 433–446.
    1. Pickrell A.M., Youle R.J. (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron, 85, 257–273.
    1. Giannoccaro M.P., La Morgia C., Rizzo G., Carelli V. (2017) Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease. Mov. Disord., 32, 346–363.
    1. Radoshevich L., Murrow L., Chen N., Fernandez E., Roy S., Fung C., Debnath J. (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 142, 590–600.
    1. Shin J.H., Ko H.S., Kang H., Lee Y., Lee Y.I., Pletinkova O., Troconso J.C., Dawson V.L., Dawson T.M. (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell, 144, 689–702.
    1. Stevens D.A., Lee Y., Kang H.C., Lee B.D., Lee Y.I., Bower A., Jiang H., Kang S.U., Andrabi S.A., Dawson V.L.. et al. (2015) Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc. Natl. Acad. Sci. USA, 112, 11696–11701.
    1. Woldt E., Sebti Y., Solt L.A., Duhem C., Lancel S., Eeckhoute J., Hesselink M.K., Paquet C., Delhaye S., Shin Y.. et al. (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med., 19, 1039–1046.
    1. Siddiqui A., Bhaumik D., Chinta S.J., Rane A., Rajagopalan S., Lieu C.A., Lithgow G.J., Andersen J.K. (2015) Mitochondrial quality control via the PGC1α-TFEB signaling pathway is compromised by Parkin Q311X mutation but independently restored by Rapamycin. J. Neurosci., 35, 12833–12844.
    1. Mansueto G., Armani A., Viscomi C., D'Orsi L., De Cegli R., Polishchuk E.V., Lamperti C., Di Meo I., Romanello V., Marchet S.. et al. (2017) Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab., 25, 182–196.
    1. Quirós P.M., Mottis A., Auwerx J. (2016) Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell. Biol., 17, 213–226.
    1. Giordano C., Iommarini L., Giordano L., Maresca A., Pisano A., Valentino M.L., Caporali L., Liguori R., Deceglie S., Roberti M.. et al. (2014) Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain, 137, 335–353.
    1. Giordano C., Montopoli M., Perli E., Orlandi M., Fantin M., Ross-Cisneros F.N., Caparrotta L., Martinuzzi A., Ragazzi E., Ghelli A.. et al. (2011) Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. Brain, 134, 220–234.
    1. Chen J.Q., Cammarata P.R., Baines C.P., Yager J.D. (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim. Biophys Acta, 1793, 1540–1570.
    1. White K.E., Davies V.J., Hogan V.E., Piechota M.J., Nichols P.P., Turnbull D.M., Votruba M. (2009) OPA1 deficiency associated with increased autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest. Ophthalmol. Vis. Sci., 50, 2567–2571.
    1. Carelli V., Musumeci O., Caporali L., Zanna C., La Morgia C., Del Dotto V., Porcelli A.M., Rugolo M., Valentino M.L., Iommarini L.. et al. (2015) Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann. Neurol., 78, 21–38.
    1. Liao C., Ashley N., Diot A., Morten K., Phadwal K., Williams A., Fearnley I., Rosser L., Lowndes J., Fratter C.. et al. (2017) Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations. Neurology, 88, 131–142.
    1. Müller-Rischart A.K., Pilsl A., Beaudette P., Patra M., Hadian K., Funke M., Peis R., Deinlein A., Schweimer C., Kuhn P.H.. et al. (2013) The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell, 49, 908–921.
    1. Dombi E., Diot A., Morten K., Carver J., Lodge T., Fratter C., Ng Y.S., Liao C., Muir R., Blakely E.L.. et al. (2016) The m.13051G>A mitochondrial DNA mutation results in variable neurology and activated mitophagy. Neurology, 86, 1921–1923.
    1. Williams P.A., Morgan J.E., Votruba M. (2010) Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain, 133, 2942–2951.
    1. Williams P.A., Piechota M., von Ruhland C., Taylor E., Morgan J.E., Votruba M. (2012) Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain, 135, 493–505.
    1. Devine M.J., Birsa N., Kittler J.T. (2016) Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol. Dis., 90, 27–34.
    1. López-Doménech G., Higgs N.F., Vaccaro V., Roš H., Arancibia-Cárcamo I.L., MacAskill A.F., Kittler J.T. (2016) Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep., 17, 317–327.
    1. Song L., Yu A., Murray K., Cortopassi G. (2017) Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res., 1657, 232–244.
    1. Saxton W.M., Hollenbeck P.J. (2012) The axonal transport of mitochondria. J. Cell Sci., 125, 2095–2104.
    1. Hyde B.B., Twig G., Shirihai O.S. (2010) Organellar vs cellular control of mitochondrial dynamics. Semin. Cell Dev. Biol., 21, 575–581.
    1. Ferree A.W., Trudeau K., Zik E., Benador I.Y., Twig G., Gottlieb R.A., Shirihai O.S. (2013) MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy, 9, 1887–1896.
    1. Cartoni R., Norsworthy M.W., Bei F., Wang C., Li S., Zhang Y., Gabel C.V., Schwarz T.L., He Z. (2016) The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron, 92, 1294–1307.
    1. Leite S.C., Sampaio P., Sousa V.F., Nogueira-Rodrigues J., Pinto-Costa R., Peters L.L., Brites P., Sousa M.M. (2016) The actin-binding protein α-Adducin is required for maintaining axon diameter. Cell Rep., 15, 490–498.
    1. Kovacs G.G., Hoftberger R., Horvath R., Barsi P., Komoly S., Lassmann H., Budka H., Jakab G. (2005) Neuropathology of white matter disease in Leber’s hereditary optic neuropathy. Brain, 128, 35–41.
    1. Kjer P., Jensen O.A., Klinken L. (1983) Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol. (Copenh), 61, 300–312.
    1. Johnston P.B., Gaster R.N., Smith V.C., Tripathi R.C. (1979) A clinicopathologic study of autosomal dominant optic atrophy. Am. J. Ophthalmol., 88, 868–875.
    1. Lin C.S., Sharpley M.S., Fan W., Waymire K.G., Sadun A.A., Carelli V., Ross-Cisneros F.N., Baciu P., Sung E., McManus. et al. (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc. Natl. Acad. Sci. USA, 109, 20065–20070.
    1. Sarzi E., Angebault C., Seveno M., Gueguen N., Chaix B., Bielicki G., Boddaert N., Mausset-Bonnefont A.L., Cazevieille C., Rigau V.. et al. (2012) The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain, 135, 3599–3613.
    1. Manners D.N., Rizzo G., La Morgia C., Tonon C., Testa C., Barboni P., Malucelli E., Valentino M.L., Caporali L., Strobbe D.. et al. (2015) Diffusion tensor imaging mapping of brain white matter pathology in mitochondrial optic neuropathies. Am. J. Neuroradiol., 36, 1259–1265.
    1. Harding A.E., Sweeney M.G., Miller D.H., Mumford C.J., Kellar-Wood H., Menard D., McDonald W.I., Compston D.A. (1992) Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation. Brain, 115, 979–989.
    1. Yu-Wai-Man P., Spyropoulos A., Duncan H.J., Guadagno J.V., Chinnery P.F. (2016) A multiple sclerosis-like disorder in patients with OPA1 mutations. Ann. Clin. Transl. Neurol., 3, 723–729.
    1. Carelli V., Bellan M. (2008) Myelin, mitochondria, and autoimmunity: what's the connection? Neurology, 70, 1075–1076.
    1. Marella M., Patki G., Matsuno-Yagi A., Yagi T. (2013) Complex I inhibition in the visual pathway induces disorganization of the node of Ranvier. Neurobiol. Dis., 58, 281–288.
    1. Koene S., Rodenburg R.J., van der Knaap M.S., Willemsen M.A., Sperl W., Laugel V., Ostergaard E., Tarnopolsky M., Martin M.A., Nesbitt V.. et al. (2012) Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J. Inherit. Metab. Dis., 35, 737–747.
    1. Harris J.J., Attwell D. (2012) The energetics of CNS white matter. J. Neurosci., 32, 356–371.
    1. Lessell S., Kuwabara T. (1974) Fine structure of experimental cyanide optic neuropathy. Invest. Ophthalmol., 13, 748–756.
    1. Ludwin S.K. (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab. Invest., 39, 597–612.
    1. Blakemore W.F. (1982) Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol. Appl. Neurobiol., 8, 365–375.
    1. Lee Y., Morrison B.M., Li Y., Lengacher S., Farah M.H., Hoffman P.N., Liu Y., Tsingalia A., Jin L., Zhang P.W.. et al. (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487, 443–448.
    1. Fünfschilling U., Supplie L.M., Mahad D., Boretius S., Saab A.S., Edgar J., Brinkmann B.G., Kassmann C.M., Tzvetanova I.D., Möbius W.. et al. (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 485, 517–521.
    1. Rinholm J.E., Vervaeke K., Tadross M.R., Tkachuk A.N., Kopek B.G., Brown T.A., Bergersen L.H., Clayton D.A. (2016) Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia, 64, 810–825.
    1. Trevisiol A., Saab A.S., Winkler U., Marx G., Imamura H., Möbius W., Kusch K., Nave K.A., Hirrlinger J. (2017) Monitoring ATP dynamics in electrically active white matter tracts. Elife, 6, e24241..
    1. Morelli A., Ravera S., Panfoli I. (2011) Hypothesis of an energetic function for myelin. Cell Biochem. Biophys., 61, 179–187.
    1. Harris J., Attwell D. (2013) Is myelin a mitochondrion? J. Cereb. Blood Flow Metab., 33, 33–36.
    1. Mutsaers S.E., Carroll W.M. (1998) Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol., 96, 139–143.
    1. Mahad D.J., Ziabreva I., Campbell G., Lax N., White K., Hanson P.S., Lassmann H., Turnbull D.M. (2009) Mitochondrial changes within axons in multiple sclerosis. Brain, 132, 1161–1174.
    1. Gibson E.M., Purger D., Mount C.W., Goldstein A.K., Lin G.L., Wood L.S., Inema I., Miller S.E., Bieri G., Zuchero J.B.. et al. (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 344, e1252304.
    1. Sadun A.A., Win P.H., Ross-Cisneros F.N., Walker S.O., Carelli V. (2000) Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans. Am. Ophthalmol. Soc., 98, 223–232.
    1. Perge J.A., Niven J.E., Mugnaini E., Balasubramanian V., Sterling P. (2012) Why do axons differ in caliber? J. Neurosci, 32, 626–638.
    1. Pan B.X., Ross-Cisneros F.N., Carelli V., Rue K.S., Salomao S.R., Moraes-Filho M.N., Moraes M.N., Berezovsky A., Belfort R. Jr, Sadun A.A. (2012) Mathematically modeling the involvement of axons in Leber's hereditary optic neuropathy. Invest. Ophthalmol. Vis. Sci., 53, 7608–7617.
    1. Ben Haim L., Rowitch D.H. (2017) Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci., 18, 31–41.
    1. Pekny M., Pekna M., Messing A., Steinhäuser C., Lee J.M., Parpura V., Hol E.M., Sofroniew M.V., Verkhratsky A. (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol., 131, 323–345.
    1. Davis C.H., Kim K.Y., Bushong E.A., Mills E.A., Boassa D., Shih T., Kinebuchi M., Phan S., Zhou Y., Bihlmeyer N.A.. et al. (2014) Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA, 111, 9633–9638.
    1. Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535, 551–555.
    1. Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295, 1065–10670.
    1. Berson D.M., Dunn F.A., Takao M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295, 1070–1073.
    1. Provencio I., Rodriguez I.R., Jiang G., Hayes W.P., Moreira E.F., Rollag M.D. (2000) A novel human opsin in the inner retina. J. Neurosci., 20, 600–605.
    1. Hannibal J., Christiansen A.T., Heegaard S., Fahrenkrug J., Kiilgaard J.F. (2017) Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J. Comp. Neurol., 525, 1934–1961.
    1. Graham D.M., Wong K.Y., Shapiro P., Frederick C., Pattabiraman K., Berson D.M. (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J. Neurophysiol., 99, 2522–2532.
    1. Schmidt T.M., Do M.T., Dacey D., Lucas R., Hattar S., Matynia A. (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J. Neurosci., 31, 16094–16101.
    1. Hannibal J., Kankipati L., Strang C.E., Peterson B.B., Dacey D., Gamlin P.D. (2014) Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J. Comp. Neurol., 522, 2231–2248.
    1. Hattar S., Kumar M., Park A., Tong P., Tung J., Yau K.W., Berson D.M. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol., 497, 326–349.
    1. Allen A.E., Storchi R., Martial F.P., Bedford R.A., Lucas R.J. (2017) Melanopsin contributions to the representation of images in the early visual system. Curr. Biol., pii:S0960-9822, 30491-30498.
    1. La Morgia C., Ross-Cisneros F.N., Sadun A.A., Hannibal J., Munarini A., Mantovani V., Barboni P., Cantalupo G., Tozer K.R., Sancisi E.. et al. (2010) Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain, 133, 2426–2438.
    1. Moura A.L., Nagy B.V., La Morgia C., Barboni P., Oliveira A.G., Salomão S.R., Berezovsky A., de Moraes-Filho M.N., Chicani C.F., Belfort R. Jr. et al. (2013) The pupil light reflex in Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 54, 4471–4477.
    1. Georg B., Ghelli A., Giordano C., Ross-Cisneros F.N., Sadun A.A., Carelli V., Hannibal J., La Morgia C. (2017) Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion, pii:S1567-7249, 30087-30089.
    1. La Morgia C., Ross-Cisneros F.N., Koronyo Y., Hannibal J., Gallassi R., Cantalupo G., Sambati L., Pan B.X., Tozer K.R., Barboni P.. et al. (2016) Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann. Neurol., 79, 90–109.
    1. Yu-Wai-Man P., Newman N.J. (2017) Inherited eye-related disorders due to mitochondrial dysfunction. Hum. Mol. Genet., [Epub ahead of print].
    1. Fortuna F., Barboni P., Liguori R., Valentino M.L., Savini G., Gellera C., Mariotti C., Rizzo G., Tonon C., Manners D.. et al. (2009) Visual system involvement in patients with Friedreich's ataxia. Brain, 132, 116–123.
    1. Angebault C., Guichet P.O., Talmat-Amar Y., Charif M., Gerber S., Fares-Taie L., Gueguen N., Halloy F., Moore D., Amati-Bonneau P.. et al. (2015) Recessive mutations in RTN4IP1 cause isolated and syndromic optic neuropathies. Am. J. Hum. Genet., 97, 754–760.
    1. Moghadam K.K., Pizza F., La Morgia C., Franceschini C., Tonon C., Lodi R., Barboni P., Seri M., Ferrari S., Liguori R.. et al. (2014) Narcolepsy is a common phenotype in HSAN IE and ADCA-DN. Brain, 137, 1643–1655.
    1. Maresca A., Zaffagnini M., Caporali L., Carelli V., Zanna C. (2015) DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated? Front. Genet., 6, 90..
    1. Hinton D.R., Sadun A.A., Blanks J.C., Miller C.A. (1986) Optic-nerve degeneration in Alzheimer's disease. N. Engl. J. Med., 315, 485–487.
    1. Sadun A.A., Bassi C.J. (1990) Optic nerve damage in Alzheimer's disease. Ophthalmology, 97, 9–17.
    1. Coppola G., Di Renzo A., Ziccardi L., Martelli F., Fadda A., Manni G., Barboni P., Pierelli F., Sadun A.A., Parisi V. (2015) Optical coherence tomography in Alzheimer's disease: a meta-analysis. PLoS One, 10, e0134750..
    1. La Morgia C., Ross-Cisneros F.N., Sadun A.A., Carelli V. (2017) Retinal ganglion cells and circadian rhythms in Alzheimer's disease, Parkinson's disease, and beyond. Front. Neurol., 8, 162..
    1. Quigley H.A., Dunkelberger G.R., Green W.R. (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology, 95, 357–363.
    1. Mendoza-Santiesteban C.E., Palma J.A., Martinez J., Norcliffe-Kaufmann L., Hedges T.R. 3rd, Kaufmann H. (2015) Progressive retinal structure abnormalities in multiple system atrophy. Mov. Disord., 30, 1944–1953.
    1. Gracitelli C.P., Duque-Chica G.L., Roizenblatt M., Moura A.L., Nagy B.V., Ragot de Melo G., Borba P.D., Teixeira S.H., Tufik S., Ventura D.F., Paranhos A. Jr., (2015) Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmology, 122, 1139–1148.
    1. Obara E.A., Hannibal J., Heegaard S., Fahrenkrug J. (2016) Loss of melanopsin-expressing retinal ganglion cells in severely staged glaucoma patients. Invest. Ophthalmol. Vis. Sci., 57, 4661–4667.
    1. La Morgia C., Barboni P., Rizzo G., Carbonelli M., Savini G., Scaglione C., Capellari S., Bonazza S., Giannoccaro M.P., Calandra-Buonaura G.. et al. (2013) Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur. J. Neurol., 20, 198–201.
    1. Kersten H.M., Danesh-Meyer H.V., Kilfoyle D.H., Roxburgh R.H. (2015) Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J. Neurol., 262, 2457–2465.
    1. Song W., Chen J., Petrilli A., Liot G., Klinglmayr E., Zhou Y., Poquiz P., Tjong J., Pouladi M.A., Hayden M.R.. et al. (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med., 17, 377–382.
    1. Guedes-Dias P., Pinho B.R., Soares T.R., de Proença J., Duchen M.R., Oliveira J.M. (2016) Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol. Dis., 90, 51–57.
    1. Hart N.J., Koronyo Y., Black K.L., Koronyo-Hamaoui M. (2016) Ocular indicators of Alzheimer's: exploring disease in the retina. Acta Neuropathol., 132, 767–787.
    1. Cordeiro M.F., Normando E.M., Cardoso M.J., Miodragovic S., Jeylani S., Davis B.M., Guo L., Ourselin S., A'Hern R., Bloom P.A. (2017) Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain, 140, 1757–1767.
    1. Shi Y., Inoue H., Wu J.C., Yamanaka S. (2017) Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov., 16, 115–130.
    1. Dutta D., Heo I., Clevers H. (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med., 23, 393–410.
    1. Bredenoord A.L., Clevers H., Knoblich J.A. (2017) Human tissues in a dish: The research and ethical implications of organoid technology. Science, 355, pii:eaaf9414.
    1. Laha B., Stafford B.K., Huberman A.D. (2017) Regenerating optic pathways from the eye to the brain. Science, 356, 1031–1034.

Source: PubMed

3
Abonnere