Effects of Intense Pulsed Light on Tear Film TGF-β and Microbiome in Ocular Rosacea with Dry Eye

Samantha Sagaser, Richard Butterfield, Heidi Kosiorek, Yael Kusne, Juan Maldonado, Michael P Fautsch, Dharmendra Patel, Joanne F Shen, Samantha Sagaser, Richard Butterfield, Heidi Kosiorek, Yael Kusne, Juan Maldonado, Michael P Fautsch, Dharmendra Patel, Joanne F Shen

Abstract

Purpose: To assess tear film transforming growth factor-beta (TGF-β) and ocular microbiome changes after intense pulsed light with meibomian gland expression (IPL-MGX) vs only MGX in treating ocular rosacea with dry eye symptoms.

Methods: Twenty patients were randomly assigned to IPL-MGX or MGX. Patients were examined, treated, and administered the ocular surface disease index (OSDI) survey every 4-6 weeks for four total treatments. Tear film and conjunctival samples were collected at first and last visits, and analyzed for TGF-β concentration and 16s rRNA amplicon sequencing of ocular microbiome. Wilcoxon Rank Sum and Sign-Rank were used to examine changes from baseline.

Results: OSDI revealed significantly greater improvement in symptoms after IPL-MGX (p=0.030) compared to MGX. There was no significant difference in mean TGF-β1, 2, or 3 concentration after IPL-MGX (p=0.385, 0.709, 0.948, respectively). Quantities of Clostridium, Klebsiella, Brevibacterium, Lactobacillus, Neisseria, Streptococcus, Corynebacterium, Butyricicoccus, and Actinomyces were significantly reduced from baseline in both groups but without a significant difference between the two treatment groups.

Conclusion: IPL-MGX improved dry eye symptoms more than MGX alone. IPL treatment offered no additional benefit to MGX in decreasing virulent bacteria present on the ocular surface and did not influence TGF-β levels in tears. Prospective studies on IPL-MGX with larger sample sizes are needed to further investigate cytokines and IPL in patients suffering from ocular rosacea with dry eye symptoms.

Clinicaltrialsgov identifier: NCT03194698.

Keywords: IPL; OSDI; ocular surface disease index; TGF-β; dry eye disease; intense pulsed light; meibomian gland disorder; meibomian gland expression; ocular microbiome; ocular rosacea; tear cytokines; transforming growth factor-beta.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2021 Sagaser et al.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/7850425/bin/OPTH-15-323-g0001.jpg

References

    1. Dana R, Bradley JL, Guerin A, et al. Estimated prevalence and incidence of dry eye disease based on coding analysis of a large, all-age United States health care system. Am J Ophthalmol. 2019;202:47–54. doi:10.1016/j.ajo.2019.01.026
    1. Chew CK, Jansweijer C, Tiffany JM, Dikstein S, Bron AJ. An instrument for quantifying meibomian lipid on the lid margin: the Meibometer. Curr Eye Res. 1993;12(3):247–254. doi:10.3109/02713689308999470
    1. Arita R, Morishige N, Fujii T, et al. Tear interferometric patterns reflect clinical tear dynamics in dry eye patients. Invest Ophthalmol Vis Sci. 2016;57(8):3928–3934. doi:10.1167/iovs.16-19788
    1. Nelson JD, Shimazaki J, Benitez-del-Castillo JM, et al. The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci. 2011;52(4):1930–1937. doi:10.1167/iovs.10-6997b
    1. Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438–510. doi:10.1016/j.jtos.2017.05.011
    1. Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628. doi:10.1016/j.jtos.2017.05.006
    1. Liu R, Rong B, Tu P, et al. Analysis of cytokine levels in tears and clinical correlations after intense pulsed light treating meibomian gland dysfunction. Am J Ophthalmol. 2017;183:81–90. doi:10.1016/j.ajo.2017.08.021
    1. Goldberg DJ. Current trends in intense pulsed light. J Clin Aesthet Dermatol. 2012;5(6):45–53.
    1. Toyos R, Mcgill W, Briscoe D. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study. Photomed Laser Surg. 2015;33(1):41–46. doi:10.1089/pho.2014.3819
    1. Gupta PK, Vora GK, Matossian C, Kim M, Stinnett S. Outcomes of intense pulsed light therapy for treatment of evaporative dry eye disease. Can J Ophthalmol. 2016;51(4):249–253. doi:10.1016/j.jcjo.2016.01.005
    1. Vegunta S, Patel D, Shen JF. Combination therapy of intense pulsed light therapy and meibomian gland expression (IPL/MGX) can improve dry eye symptoms and meibomian gland function in patients with refractory dry eye: a retrospective analysis. Cornea. 2016;35(3):318–322. doi:10.1097/ICO.0000000000000735
    1. Vora GK, Gupta PK. Intense pulsed light therapy for the treatment of evaporative dry eye disease. Curr Opin Ophthalmol. 2015;26(4):314–318. doi:10.1097/ICU.0000000000000166
    1. Arita R, Mizoguchi T, Fukuoka S, Morishige N. Multicenter study of intense pulsed light therapy for patients with refractory meibomian gland dysfunction. Cornea. 2018;37(12):1566–1571. doi:10.1097/ICO.0000000000001687
    1. Dell SJ. Intense pulsed light for evaporative dry eye disease. Clin Ophthalmol (Auckland, NZ). 2017;11:1167–1173. doi:10.2147/OPTH.S139894
    1. Dell SJ, Gaster RN, Barbarino SC, Cunningham DN. Prospective evaluation of intense pulsed light and meibomian gland expression efficacy on relieving signs and symptoms of dry eye disease due to meibomian gland dysfunction. Clin Ophthalmol (Auckland, NZ). 2017;11:817–827. doi:10.2147/OPTH.S130706
    1. Craig JP, Chen YH, Turnbull PRK. Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2015;56(3):1965–1970. doi:10.1167/iovs.14-15764
    1. Guilloto CS, Garcia MJL, Colmenero RE. Effect of pulsed laser light in patients with dry eye syndrome. Arch Soc Esp Oftalmol. 2017;92(11):509–515. doi:10.1016/j.oftal.2016.12.018
    1. Jiang X, Lv H, Song H, et al. Evaluation of the safety and effectiveness of intense pulsed light in the treatment of meibomian gland dysfunction. J Ophthalmol. 2016;2016:1910694. doi:10.1155/2016/1910694
    1. Milner MS, Beckman KA, Luchs JI, et al. Dysfunctional tear syndrome: dry eye disease and associated tear film disorders - new strategies for diagnosis and treatment. Curr Opin Ophthalmol. 2017;27(Suppl1):3–47. doi:10.1097/01.icu.0000512373.81749.b7
    1. Lam H, Bleiden L, de Paiva CS, Farley W, Stern ME, Pflugfelder SC. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol. 2009;147(2):198–205. e191. doi:10.1016/j.ajo.2008.08.032
    1. Massingale ML, Li X, Vallabhajosyula M, Chen D, Wei Y, Asbell PA. Analysis of Inflammatory cytokines in the tears of dry eye patients. Cornea. 2009;28(9):1023–1027. doi:10.1097/ICO.0b013e3181a16578
    1. Jackson DC, Zeng W, Wong CY, et al. Tear interferon-gamma as a biomarker for evaporative dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(11):4824–4830. doi:10.1167/iovs.16-19757
    1. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641. doi:10.1146/annurev.cb.06.110190.003121
    1. Sporn MB, Roberts AB. Transforming growth factor—β: multiple actions and potential clinical applications. JAMA. 1989;262(7):938–941. doi:10.1001/jama.1989.03430070086036
    1. Ali MM, Porter RM, Gonzalez ML. Intense pulsed light enhances transforming growth factor beta1/Smad3 signaling in acne-prone skin. J Cosmet Dermatol. 2013;12(3):195–203. doi:10.1111/jocd.12045
    1. Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr Eye Res. 1999;19(3):201–211. doi:10.1076/ceyr.19.3.201.5309
    1. Zhang L, Su Z, Zhang Z, Lin J, Li D-Q, Pflugfelder SC. Effects of azithromycin on gene expression profiles of proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with meibomian gland disease. JAMA Ophthalmol. 2015;133(10):1117–1123. doi:10.1001/jamaophthalmol.2015.2326
    1. Mukamal R. Microbiome of the eye. Am Acad Ophthalmol. 2019.
    1. Lu LJ, Liu J. Human microbiota and ophthalmic disease. Yale J Biol Med. 2016;89(3):325–330.
    1. Miller D, Iovieno A. The role of microbial flora on the ocular surface. Curr Opin Allergy Clin Immunol. 2009;9(5):466–470. doi:10.1097/ACI.0b013e3283303e1b
    1. Doan T, Akileswaran L, Andersen D, et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci. 2016;57(13):5116–5126. doi:10.1167/iovs.16-19803
    1. Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007;48(12):5616–5623. doi:10.1167/iovs.07-0588
    1. Oakley A Fitzpatrick skin phototype DermNet NZ. 2012.
    1. Real D, Hwang F, Bunya V. Dry eye syndrome questionnaires. Am Acad Ophthalmol. 2020.
    1. EMP Ontology (EMPO). Earth microbiome project; 2020. Available from: . Accessed January05, 2021
    1. Rong B, Tang Y, Liu R, et al. Long-term effects of intense pulsed light combined with meibomian gland expression in the treatment of meibomian gland dysfunction. Photomed Laser Surg. 2018;36(10):562–567. doi:10.1089/pho.2018.4499
    1. Rong B, Tang Y, Tu P, et al. Intense pulsed light applied directly on eyelids combined with meibomian gland expression to treat meibomian gland dysfunction. Photomed Laser Surg. 2018;36(6):326–332. doi:10.1089/pho.2017.4402
    1. Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516–4522. doi:10.1073/pnas.1000080107

Source: PubMed

3
Abonnere