Optimizing Parkinson's disease diagnosis: the role of a dual nuclear imaging algorithm

J William Langston, Jesse C Wiley, Michele Tagliati, J William Langston, Jesse C Wiley, Michele Tagliati

Abstract

The diagnosis of Parkinson's disease (PD) currently relies almost exclusively on the clinical judgment of an experienced neurologist, ideally a specialist in movement disorders. However, such clinical diagnosis is often incorrect in a large percentage of patients, particularly in the early stages of the disease. A commercially available, objective and quantitative marker of nigrostriatal neurodegeneration was recently provided by 123-iodine 123I-ioflupane SPECT imaging, which is however unable to differentiate PD from a variety of other parkinsonian syndromes associated with striatal dopamine deficiency. There is evidence to support an algorithm utilizing a dual neuroimaging strategy combining 123I-ioflupane SPECT and the noradrenergic receptor ligand 123I-metaiodobenzylguanidine (MIBG), which assesses the post-ganglion peripheral autonomic nervous system. Evolving concepts regarding the synucleinopathy affecting the central and peripheral autonomic nervous systems as part of a multisystem disease are reviewed to sustain such strategy. Data are presented to show how MIBG deficits are a common feature of multisystem Lewy body disease and can be used as a unique feature to distinguish PD from atypical parkinsonisms. We propose that the combination of cardiac (MIBG) and cerebral 123I-ioflupane SPECT could satisfy one of the most significant unmet needs of current PD diagnosis and management, namely the early and accurate diagnosis of patients with typical Lewy body PD. Exemplary case scenarios will be described, highlighting how dual neuroimaging strategy can maximize diagnostic accuracy for patient care, clinical trials, pre-symptomatic PD screening, and special cases provided by specific genetic mutations associated with PD.

Conflict of interest statement

J.W.L. received research funds from General Electric, unrelated to the preparation of this manuscript. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1
MIBG-DAT dual imaging diagnostic algorithm. MIBG abnormality separates multisystem Lewy body disease (MLBD) pathologies, including idiopathic Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) from other types of parkinsonism. 123I-Ioflupane measures the integrity of nigrostriatal dopamine projections. Low dopamine transporter (DAT) levels in the caudate, putamen or both, in either brain hemisphere, are consistent with a parkinsonian disorder, independently of its nature. In subjects with appropriate symptoms and signs, the combination of the two imaging modalities allows discriminating four distinct pathologies: (1) non-parkinsonian disorders (upper left quadrant, dual test normality); (2) atypical non-Lewy body parkinsonism (upper right quadrant, normal MIBG, and abnormal DAT); (3) early-stage MLBD or pre-symptomatic parkinsonism (lower left quadrant, abnormal MIBG and normal DAT); (4) MLBD, either DLB or PD (lower right quadrant, abnormal MIBG, and DAT)

References

    1. De Lau, L. M. L. & Breteler, M. M. Epidemiology of Parkinson’s disease. Lancet Neurol.5, 525–535 (2006).
    1. Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Time trends in the incidence of Parkinson disease. JAMA Neurol. 2016;73:981–989. doi: 10.1001/jamaneurol.2016.0947.
    1. Huse DM, et al. Burden of illness in Parkinson’s disease. Mov. Disord. 2005;20:1449–1454. doi: 10.1002/mds.20609.
    1. Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J. Neural Transm. 2015;122:1429–1440. doi: 10.1007/s00702-015-1405-5.
    1. Lang AE, Obeso JA. Time to move beyond nigrostriatal dopamine deficiency in Parkinson’s disease. Ann. Neurol. 2004;55:761–765. doi: 10.1002/ana.20102.
    1. Titova N, Chaudhuri KR. Nonmotor Parkinson’s and future directions. Int. Rev. Neurobiol. 2017;134:1493–1505. doi: 10.1016/bs.irn.2017.05.017.
    1. Langston JW. The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann. Neurol. 2006;59:591–596. doi: 10.1002/ana.20834.
    1. Langston JW, Schule B, Rees L, Nichols RJ, Barlow C. Multisystem Lewy body disease and the other Parkinsonian disorders. Nat. Genet. 2015;47:1378–1384. doi: 10.1038/ng.3454.
    1. Adler CH, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83:406–412. doi: 10.1212/WNL.0000000000000641.
    1. Marek K, Jennings D. Can we image pre-motor Parkinson disease? Neurology. 2009;72:S21–26. doi: 10.1212/WNL.0b013e318198df97.
    1. Stoessl AJ, Halliday GM. DAT-SPECT diagnoses dopamine depletion, but not PD. Mov. Disord. 2014;29:1705–1706. doi: 10.1002/mds.26000.
    1. Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med Surg. 2015;5:433–447.
    1. Eshuis SA, et al. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur. J. Nucl. Med. Mol. Imaging. 2009;36:454–462. doi: 10.1007/s00259-008-0989-5.
    1. Appel L, et al. Use of 11C-PE2I PET in differential diagnosis of Parkinsonian disorders. J. Nucl. Med. 2015;56:234–242. doi: 10.2967/jnumed.114.148619.
    1. Ziebell M, et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123 I-FP-CIT and 123 I-PE2I. J. Nucl. Med. 2010;51:1885–1891. doi: 10.2967/jnumed.110.078337.
    1. Joling M, et al. Analysis of extrastriatal (123)I-FP-CIT binding contributes to the differential diagnosis of Parkinsonian diseases. J. Nucl. Med. 2017;58:1117–1123. doi: 10.2967/jnumed.116.182139.
    1. Marek K, et al. Longitudinal follow-up of SWEDD subjects in the PRECEPT Study. Neurology. 2014;82:1791–1797. doi: 10.1212/WNL.0000000000000424.
    1. Batla A, et al. Patients with scans without evidence of dopaminergic deficit: a long-term follow-up study. Mov. Disord. 2014;29:1820–1825. doi: 10.1002/mds.26018.
    1. Booij J, Kemp P. Dopamine transporter imaging with [(123)I]FP-CIT SPECT: potential effects of drugs. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:424–438. doi: 10.1007/s00259-007-0621-0.
    1. Schillaci O, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with(123)I-FP-CIT in patients with Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:1452–1456. doi: 10.1007/s00259-005-1922-9.
    1. Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:443–450. doi: 10.1007/s00259-009-1267-x.
    1. Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat. Rev. Neurol. 2013;9:13–24. doi: 10.1038/nrneurol.2012.242.
    1. Greenfield JG, Bosanquet FD. The brain-stem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiat. 1953;16:213–226. doi: 10.1136/jnnp.16.4.213.
    1. Braak H, et al. Nigral and extranigral pathology in Parkinson’s disease. J. Neural Transm. Suppl. 1995;46:15–31.
    1. Braak H, et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages) J. Neurol. 2002;249:1–5. doi: 10.1007/s00415-002-1301-4.
    1. Kosaka K, Yoshimura M, Ikeda K, Budka H. Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree—a new disease? Clin. Neuropathol. 1984;3:185–192.
    1. Beach TG, et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 2009;117:169–174. doi: 10.1007/s00401-008-0450-7.
    1. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 2007;33:599–614. doi: 10.1111/j.1365-2990.2007.00874.x.
    1. Raudino F, Leva S. Involvement of the spinal cord in Parkinson’s disease. Int. J. Neurosci. 2012;122:1–8. doi: 10.3109/00207454.2011.613551.
    1. Herzog E. Histopathologische Veränderungen im Sympathicus und ihre Bedeutung. Dtsch. Z. Nervenheilkd. 1928;107:75–80. doi: 10.1007/BF01660129.
    1. Den Hartog Jager, W. A. & Bethlem, J. The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. J. Neurol. Neurosurg. Psychiat.23, 283–290 (1960).
    1. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 1988;76:217–221. doi: 10.1007/BF00687767.
    1. Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J. Neurol. Sci. 2012;313:57–63. doi: 10.1016/j.jns.2011.09.030.
    1. Goldstein DS, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation. 1990;81:1606–1621. doi: 10.1161/01.CIR.81.5.1606.
    1. Chung EJ, Kim SJ. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Lewy body-related disorders: a literature review. J. Mov. Disord. 2015;8:55–66. doi: 10.14802/jmd.15015.
    1. Mitsui J, et al. Pathology of the sympathetic nervous system corresponding to the decreased cardiac uptake in 123I-metaiodobenzylguanidine (MIBG) scintigraphy in a patient with Parkinson disease. J. Neurol. Sci. 2006;243:101–104. doi: 10.1016/j.jns.2005.11.034.
    1. Gelpi E, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov. Disord. 2014;29:1010–1018. doi: 10.1002/mds.25776.
    1. Takahashi M, et al. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J. Neurol. Neurosurg. Psychiat. 2015;86:939–944. doi: 10.1136/jnnp-2015-310686.
    1. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J. Nucl. Cardiol. 2004;11:603–616. doi: 10.1016/j.nuclcard.2004.06.133.
    1. Odagiri H, et al. On the utility of MIBG-SPECT/CT in evaluating cardiac sympathetic dysfunction in lewy body diseases. PLoS ONE. 2016;11:e0152746. doi: 10.1371/journal.pone.0152746.
    1. Oka H, et al. Reduced cardiac 123I-MIBG uptake reflects cardiac sympathetic dysfunction in Lewy body disease. Neurology. 2007;69:1460–1465. doi: 10.1212/01.wnl.0000277450.49788.82.
    1. Yoshita M, et al. Diagnostic accuracy of 123I-metaiodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS ONE. 2015;10:e0120540. doi: 10.1371/journal.pone.0120540.
    1. Hanyu H, et al. Comparative value of brain perfusion SPECT and [(123)I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2006;33:248–253. doi: 10.1007/s00259-005-1921-x.
    1. Kashihara K, Ohno M, Kawada S, Okumura Y. Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J. Nucl. Med. 2006;47:1099–1101.
    1. Hague K, Lento P, Morgello S, Caro S, Kaufmann H. The distribution of Lewy bodies in pure autonomic failure: autopsy findings and review of the literature. Acta Neuropathol. 1997;94:192–196. doi: 10.1007/s004010050693.
    1. Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a Parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep. Med. 2013;14:744–748. doi: 10.1016/j.sleep.2012.10.009.
    1. Postuma RB, Gagnon JF, Bertrand JA, Genier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology. 2015;84:1104–1113. doi: 10.1212/WNL.0000000000001364.
    1. Boeve BF, et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep. Med. 2013;14:754–762. doi: 10.1016/j.sleep.2012.10.015.
    1. Miyamoto, T., Miyamoto, M., Iwanami, M. & Hirata, K. Follow-up study of cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Eur. J. Neurol. 18, 1275–1278 (2011).
    1. Postuma RB, Lanfranchi PA, Blais H, Gagnon JF, Montplaisir JY. Cardiac autonomic dysfunction in idiopathic REM sleep behavior disorder. Mov. Disord. 2010;25:2304–2310. doi: 10.1002/mds.23347.
    1. Nomura T, et al. Relationship between (123)I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Park. Relat. Disord. 2010;16:683–685. doi: 10.1016/j.parkreldis.2010.08.011.
    1. Salsone M, Labate A, Quattrone A. Cardiac denervation precedes nigrostriatal damage in idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2012;27:1068–1069. doi: 10.1002/mds.25002.
    1. Tateno F, et al. Constipation and metaiodobenzylguanidine myocardial scintigraphy abnormality. J. Am. Geriatr. Soc. 2012;60:185–187. doi: 10.1111/j.1532-5415.2011.03737.x.
    1. Mizutani Y, et al. Hyposmia and cardiovascular dysautonomia correlatively appear in early-stage Parkinson’s disease. Park. Relat. Disord. 2014;20:520–524. doi: 10.1016/j.parkreldis.2014.02.010.
    1. Sakakibara R, et al. MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review. Park. Relat. Disord. 2014;20:267–273. doi: 10.1016/j.parkreldis.2013.11.001.
    1. Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 metaiodobenzylguanidine myocardial scintigraphy. J. Neurol. Sci. 1998;155:60–67. doi: 10.1016/S0022-510X(97)00278-5.
    1. Takatsu H, et al. Differentiating Parkinson disease from multiple-system atrophy by measuring cardiac iodine-123 metaiodobenzylguanidine accumulation. JAMA. 2000;284:44–45. doi: 10.1001/jama.284.1.39.
    1. Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative Parkinsonism: a systematic review and meta-analysis. Park. Relat. Disord. 2012;18:494–500. doi: 10.1016/j.parkreldis.2012.01.009.
    1. Treglia G, et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin. Auton. Res. 2012;22:43–55. doi: 10.1007/s10286-011-0135-5.
    1. Spiegel J, et al. FP-CIT and MIBG scintigraphy in early Parkinson’s disease. Movt Disord. 2005;20:552–561. doi: 10.1002/mds.20369.
    1. Takatsu H, et al. Cardiac sympathetic denervation from the early-stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J. Nucl. Med. 2000;41:71–77.
    1. Druschky A, et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J. Neurol. Sci. 2000;175:3–12. doi: 10.1016/S0022-510X(00)00279-3.
    1. Orimo S, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007;113:81–86. doi: 10.1007/s00401-006-0160-y.
    1. Umemura A, et al. Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson’s disease. PLoS ONE. 2013;8:e61066. doi: 10.1371/journal.pone.0061066.
    1. Kurata T, et al. PSP as distinguished from CBD, MSA-P and PD by clinical and imaging differences at an early-stage. Intern. Med. 2011;50:2775–2781. doi: 10.2169/internalmedicine.50.5954.
    1. Ishibashi K, et al. Validation of cardiac (123)I-MIBG scintigraphy in patients with Parkinson’s disease who were diagnosed with dopamine PET. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:3–11. doi: 10.1007/s00259-009-1202-1.
    1. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology. 1999;53:1020–1025. doi: 10.1212/WNL.53.5.1020.
    1. Yoshita M. Cardiac uptake of [123I]MIBG separates PD from multiple system atrophy. Neurology. 2000;54:1877–1878. doi: 10.1212/WNL.54.9.1877-a.
    1. Treglia G, et al. Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson’s disease and multiple-system atrophy: a systematic review and a meta-analysis. Clin. Neurol. Neurosurg. 2011;113:823–829. doi: 10.1016/j.clineuro.2011.09.004.
    1. Shin DH, Lee PH, Bang OY, Joo IS, Huh K. Clinical implications of cardiac-MIBG-SPECT in the differentiation of Parkinsonian syndromes. J. Clin. Neurol. 2006;2:51–57. doi: 10.3988/jcn.2006.2.1.51.
    1. Orimo S, et al. [123I] metaiodobenzylguanidine myocardial scintigraphy differentiates corticobasal degeneration from Parkinson’s disease. Intern. Med. 2003;42:127–128. doi: 10.2169/internalmedicine.42.127.
    1. King AE, Mintz J, Royall DR. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov. Disord. 2011;26:1218–1224. doi: 10.1002/mds.23659.
    1. Sudmeyer M, et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative Parkinsonism: a multidimensional statistical approach. J. Nucl. Med. 2011;52:733–740. doi: 10.2967/jnumed.110.086959.
    1. Koga S, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology. 2015;85:404–412. doi: 10.1212/WNL.0000000000001807.
    1. Treglia G, et al. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: complementary or alternative techniques? J. Neuroimaging. 2014;24:149–154. doi: 10.1111/j.1552-6569.2012.00774.x.
    1. Tsujikawa K, et al. Chronological changes of 123I-MIBG myocardial scintigraphy and clinical features of Parkinson’s disease. J. Neurol. Neurosurg. Psychiat. 2015;86:945–951. doi: 10.1136/jnnp-2015-310327.
    1. Mizutani Y, et al. Retrospective analysis of Parkinsonian patients exhibiting normal (123)I-MIBG cardiac uptake. J. Neurol. Sci. 2015;359:236–240. doi: 10.1016/j.jns.2015.10.059.
    1. Badoud S, Nicastro N, Garibotto V, Burkhard PR, Haller S. Distinct spatiotemporal patterns for disease duration and stage in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:509–516. doi: 10.1007/s00259-015-3176-5.
    1. Marras C, Chaudhuri KR. Nonmotor features of Parkinson’s disease subtypes. Mov. Disord. 2016;31:1095–1102. doi: 10.1002/mds.26510.
    1. Yamada A, et al. [(123)I]-Ioflupane SPECT in combination with MIBG myocardial scintigraphy in Parkinson’s disease: a case series study. Rinsho. Shinkeigaku. 2016;56:400–406. doi: 10.5692/-000848.
    1. Miyamoto T, et al. Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology. 2006;67:2236–2238. doi: 10.1212/01.wnl.0000249313.25627.2e.
    1. Iranzo A. Parkinson disease and sleep: sleep-wake changes in the pre-motor stage of Parkinson disease; impaired olfaction and other prodromal features. Curr. Neurol. Neurosci. Rep. 2013;13:373. doi: 10.1007/s11910-013-0373-0.
    1. Tiraboschi P, et al. 123 I-FP-CIT SPECT and 123 I-MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from other dementias: a comparative study. Ann. Neurol. 2016;80:368–378. doi: 10.1002/ana.24717.
    1. Asahi T, Kashiwazaki D, Yoneyama T, Noguchi K, Kuroda S. Importance of (123)I-ioflupane SPECT and myocardial MIBG scintigraphy to determine the candidate of deep brain stimulation for Parkinson’s disease. Neurol. Med. Chir. 2016;56:125–131. doi: 10.2176/nmc.oa.2015-0234.
    1. Novellino F, et al. Combined use of DAT-SPECT and cardiac MIBG scintigraphy in mixed tremors. Mov. Disord. 2009;24:2242–2248. doi: 10.1002/mds.22771.
    1. Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424.
    1. Navarro-Otano J, et al. 123I-MIBG cardiac uptake, smell identification and 123I-FP-CIT SPECT in the differential diagnosis between vascular Parkinsonism and Parkinson’s disease. Park. Relat. Disord. 2014;20:192–197. doi: 10.1016/j.parkreldis.2013.10.025.
    1. Berardelli A, et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur. J. Neurol. 2013;20:16–34. doi: 10.1111/ene.12022.
    1. Nuvoli S, et al. 123I-ioflupane brain SPECT and 123I-MIBG cardiac planar scintigraphy combined use in uncertain Parkinsonian disorders. Medicine. 2017;96:e6967. doi: 10.1097/MD.0000000000006967.
    1. Jang W, et al. Cardiac sympathetic denervation in Parkinson’s disease patients with SWEDDs. Neurol. Sci. 2013;34:1375–1382. doi: 10.1007/s10072-012-1244-1.
    1. Marshall VL, et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov. Disord. 2009;24:500–508. doi: 10.1002/mds.22108.
    1. Kim, J. S. et al. Combined use of 123I-metaiodobenzylguanidine (MIBG) scintigraphy and dopamine transporter (DAT) positron emission tomography (PET) predicts prognosis in drug-induced Parkinsonism (DIP): a 2-year follow-up study. Arch. Gerontol. Geriatr. 56, 124–128 (2013).
    1. Hoglinger GU, et al. Differentiation of atypical Parkinson syndromes. J. Neural Transm. 2017;124:997–1004. doi: 10.1007/s00702-017-1700-4.
    1. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 2013;9:445–454. doi: 10.1038/nrneurol.2013.132.
    1. Kalia LV, et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 2014;72:100–105. doi: 10.1001/jamaneurol.2014.2704.
    1. Quattrone A, et al. Myocardial 123 metaiodobenzylguanidine uptake in genetic Parkinson’s disease. Mov. Disord. 2008;23:21–27. doi: 10.1002/mds.21701.
    1. Valappil RA, et al. Exploring the electrocardiogram as a potential tool to screen for pre-motor Parkinson’s disease. Mov. Disord. 2010;25:2296–2303. doi: 10.1002/mds.23348.
    1. Slaets S, et al. Diagnostic value of MIBG cardiac scintigraphy for differential dementia diagnosis. Int. J. Geriatr. Psychiatry. 2015;30:864–869. doi: 10.1002/gps.4229.
    1. Kasanuki K, et al. Impaired heart rate variability in patients with dementia with Lewy bodies: efficacy of electrocardiogram as a supporting diagnostic marker. Park. Relat. Disord. 2015;21:749–754. doi: 10.1016/j.parkreldis.2015.04.024.
    1. Shimizu S, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:184–192. doi: 10.1007/s00259-015-3146-y.

Source: PubMed

3
Abonnere