CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy

Juliana Rocha Santos, Paulo R X Tomaz, Jaqueline S Issa, Tânia O Abe, José E Krieger, Alexandre C Pereira, Paulo C J L Santos, Juliana Rocha Santos, Paulo R X Tomaz, Jaqueline S Issa, Tânia O Abe, José E Krieger, Alexandre C Pereira, Paulo C J L Santos

Abstract

Background: The large individual variability in response to drugs for smoking cessation suggests that specific treatments can be more effective in particular subgroups of smokers. In the context of personalized medicine, the main aim of the present study was to evaluate whether the CHRNA4 and CHRNB2 polymorphisms are associated with response to smoking cessation therapies in patients from a smoker assistance program.

Methods: This cohort study enrolled 483 smoking patients who received behavioral counseling and drug treatment (varenicline, bupropion, and/or nicotine replacement therapy). Smoking cessation success was considered for patients who completed 6 months of continuous abstinence. Fagerström test for nicotine dependence (FTND) and Issa situational smoking scores were analyzed for nicotine dependence. The CHRNA4 (rs1044396 and rs2236196) and CHRNB2 (rs2072660 and rs2072661) polymorphisms were genotyped by high resolution melting analysis.

Results: Patients with rs1044396 CC genotype had lower success rate in treatment with varenicline (29.5%) compared with carriers of CT or TT genotypes (50.9%; p = 0.007, n = 167). The CT or TT genotypes were associated with higher odds ratio for success (OR = 1.67, 95% CI = 1.10-2.53, p = 0.02), in a multivariate model. We did not observe significant differences in the FTND and Issa scores according to the studied polymorphisms.

Conclusion: The CHRNA4 rs1044396 is associated with smoking cessation in individuals on varenicline therapy. We suggest that this polymorphism influences the varenicline response, but replications of this finding are needed.

Keywords: CHRNA4; CHRNB2; pharmacogenetic; polymorphism; smoking cessation; varenicline.

Figures

FIGURE 1
FIGURE 1
Status of the patients treated with varenicline according to CHRNA4 rs1044396 polymorphism. (A) status according to dominant model. (B) status according to additive model.

References

    1. Breitling L. P., Dahmen N., Mittelstrass K., Rujescu D., Gallinat J., Fehr C., et al. (2009). Association of nicotinic acetylcholine receptor subunit alpha 4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J. 9 219–224 10.1038/tpj.2009.6
    1. Broms U., Silventoinen K., Madden P. A., Heath A. C., Kaprio J. (2006). Genetic architecture of smoking behavior: a study of Finnish adult twins. Twin Res. Hum. Genet. 9 64–72 10.1375/twin.9.1.64
    1. Centers for Disease Control and Prevention (CDC). (2010). Vital signs: current cigarette smoking among adults aged ≥18 years—United States, 2009. MMWR, Morb. Mortal. Wkly. Rep. 59 1135–1140.
    1. Chu C. J., Yang Y. C., Wei J. X., Zhang L. (2011). Association of nicotinic acetylcholine receptor subunit alpha-4 polymorphisms with smoking behaviors in Chinese male smokers. Chin. Med. J. (Engl.) 124 1634–1638.
    1. Coe J. W., Brooks P. R., Vetelino M. G., Wirtz M. C., Arnold E. P., Huang J., et al. (2005). Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J. Med. Chem. 48 3474–3477 10.1021/jm050069n
    1. Conti D. V., Lee W., Li D., Liu J., Van Den Berg D., Thomas P. D., et al. (2008). Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum. Mol. Genet. 17 2834–2848 10.1093/hmg/ddn181
    1. Ehringer M. A., Clegg H. V., Collins A. C., Corley R. P., Crowley T., Hewitt J. K., et al. (2007). Association of the neuronal nicotinic receptor beta2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 596–604 10.1002/ajmg.b.30464
    1. Etter J. F., Hoda J. C., Perroud N., Munafò M., Buresi C., Duret C., et al. (2009). Association of genes coding for the alpha-4, alpha-5, beta-2 and beta-3 subunits of nicotinic receptors with cigarette smoking and nicotine dependence. Addict. Behav. 34 772–775 10.1016/j.addbeh.2009.05.010
    1. Fagerstrom K. O., Heatherton T. F., Kozlowski L. T. (1990). Nicotine addiction and its assessment. Ear Nose Throat. J. 69 763–765.
    1. Feng Y., Niu T., Xing H., Xu X., Chen C., Peng S., et al. (2004). A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am. J. Hum. Genet. 75 112–121 10.1086/422194
    1. Fiore M. C., Bailey W. C., Cohen S. J., Dorfman S. F., Goldstein M. G., Gritz E. R., et al. (2000). Treating Tobacco Use and Dependence. Clinical Practice Guideline. Ph.D. thesis, U.S. Department of Health and Human Services, Public Health Service; Rockville, MD.
    1. Fiore M. C., Jaén C. R., Baker T. B., Bailey W. C., Benowitz N. L., Curry S. J., et al. (2008). Treating Tobacco Use and Dependence: 2008 Update. Clinical Practice Guideline. Ph.D. thesis, U.S. Department of Health and Human Services Public Health Service; Rockville, MD.
    1. Greenwood P. M., Parasuraman R., Espeseth T. (2012). A cognitive phenotype for a polymorphism in the nicotinic receptor gene CHRNA4. Neurosci. Biobehav. Rev. 36 1331–1341 10.1016/j.neubiorev.2012.02.010
    1. Han S., Yang B. Z., Kranzler H. R., Oslin D., Anton R., Gelernter J., et al. (2011). Association of CHRNA4 polymorphisms with smoking behavior in two populations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B 421–429 10.1002/ajmg.b.31177
    1. Hogg R. C., Raggenbass M., Bertrand D. (2003). Nicotinic acetylcholine receptors: from structure to brain function. Rev. Physiol. Biochem. Pharmacol. 147 1–46 10.1007/s10254-003-0005-1
    1. Hutchison K. E., Allen D. L., Allen D. L., Filbey F. M., Jepson C., Lerman C., et al. (2007). CHRNA4 and tobacco dependence: from gene regulation to treatment outcome. Arch. Gen. Psychiatry 64 1078–1086 10.1001/archpsyc.64.9.1078
    1. Issa J. S. (2012). A new nicotine dependence score and a new scale assessing patient comfort during smoking cessation treatment. J. Bras. Pneumol. 38 761–765 10.1590/S1806-37132012000600012
    1. Issa J. S., Abe T. O., Moura S., Santos P. C., Pereira A. C. (2013). Effectiveness of coadministration of varenicline, bupropion, and serotonin reuptake inhibitors in a smoking cessation program in the real-life setting. Nicotine Tob. Res. 15 1146–1150 10.1093/ntr/nts230
    1. Issa J. S., Santos P. C., Vieira L. P., Abe T. O., Kuperszmidt C. S., Nakasato M, E., et al. (2014). Smoking cessation and weight gain in patients with cardiovascular disease or risk factor. Int. J. Cardiol. 172 485–487 10.1016/j.ijcard.2014.01.055
    1. Jairam P. M., de Jong P. A., Mali W. P., Isgum I., de Koning H. J., van der Aalst C., et al. (2013). Impact of cardiovascular calcifications on the detrimental effect of continued smoking on cardiovascular risk in male lung cancer screening participants. PLoS ONE 8:e66484 10.1371/journal.pone.0066484
    1. Kamens H. M., Corley R. P., Corley R. P., McQueen M. B., Stallings M. C., Hopfer C. J., et al. (2013). Nominal association with CHRNA4 variants and nicotine dependence. Genes Brain Behav. 12 297–304 10.1111/gbb.12021
    1. King D. P., Paciga S., Pickering E., Benowitz N. L., Bierut L. J., Conti D. V., et al. (2012). Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37 641–650 10.1038/npp.2011.232
    1. Lerman C., Kaufmann V., Rukstalis M., Patterson F., Perkins K., Audrain-McGovern J., et al. (2004). Individualizing nicotine replacement therapy for the treatment of tobacco dependence: a randomized trial. Ann. Intern. Med. 140 426–433 10.7326/0003-4819-140-6-200403160-00009
    1. Lessov C. N., Martin N. G., Statham D. J., Todorov A. A., Slutske W. S., Bucholz K. K., et al. (2004). Defining nicotine dependence for genetic research: evidence from Australian twins. Psychol. Med. 34 865–879 10.1017/S0033291703001582
    1. Li M. D., Beuten J., Ma J. Z., Payne T. J., Lou X. Y., Garcia V., et al. (2005). Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum. Mol. Genet. 14 1211–1219 10.1093/hmg/ddi132
    1. Li M. D., Lou X. Y., Chen G., Ma J. Z., Elston R. C. (2008). Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol. Psychiatry 64 951–957 10.1016/j.biopsych.2008.04.026
    1. MacLean D. R., Chockalingam A. (1999). The global burden of cardiovascular diseases. Can. J. Cardiol. 15(Suppl. G) 17G–19G.
    1. Markett S., Montag C., Reuter M. (2011). The nicotinic acetylcholine receptor gene CHRNA4 is associated with negative emotionality. Emotion 11 450–455 10.1037/a0021784
    1. Markou A., Kosten T. R., Koob G. F. (1998). Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18 135–174 10.1016/S0893-133X(97)00113-9
    1. Ng M., Freeman M. K., Fleming T. D., Robinson M., Dwyer-Lindgren L., Thomson B. (2014). Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 311 183–192 10.1001/jama.2013.284692
    1. Oliveira A. F., Valente J. G., Leite I. C. (2008). [Aspects of tobacco attributable mortality: systematic review]. Rev. Saude Publica 42 335–345 10.1590/S0034-89102008005000001
    1. Paperwalla K. N., Levin T. T., Weiner J., Saravay S. M. (2004). Smoking and depression. Med. Clin. North Am. 88 1483–1494 10.1016/j.mcna.2004.06.007
    1. Pappas R. S., Polzin G. M., Watson C. H., Ashley D. L. (2007). Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem. Toxicol. 45 202–209 10.1016/j.fct.2006.08.001
    1. Pena S. D., Di Pietro G., Fuchshuber-Moraes M., Genro J. P., Hutz M. H., Kehdy F. S., et al. (2011). The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE 6:e17063 10.1371/journal.pone.0017063
    1. Perkins K. A., Lerman C., Mercincavage M., Fonte C. A., Briski J. L. (2009). Nicotinic acetylcholine receptor beta2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch. Cancer Epidemiol. Biomarkers. Prev. 18 2608–2612 10.1158/1055-9965.EPI-09-0166
    1. Quaak M., van Schooten F. J., van Schayck C. P. (2014). Pharmacogenetics of smoking: how far to the clinic? Pharmacogenomics 15 723–726 10.2217/pgs.14.34
    1. Roger V. L., Go A. S., Lloyd-Jones D. M., Benjamin E. J., Berry J. D., Ford E. S., et al. (2012). Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125 e2–e220 10.1161/CIR.0b013e31823ac046
    1. Santos P. C., Soares R. A., Nascimento R. M., Machado-Coelho G. L., Mill J. G., Krieger J. E., et al. (2011a). SLCO1B1 rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med. Genet. 12:136 10.1186/1471-2350-12-136
    1. Santos P. C., Soares R. A., Santos D. B. G., Nascimento R. M., Coelho G. L. L. M., Nicolau J. C., et al. (2011b). CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med. Genet. 12:13 10.1186/1471-2350-12-13
    1. Soares R. A. G., Santos P. C., Machado-Coelho G. L., do Nascimento R. M., Mill J. G., Krieger J. E., et al. (2012). CYP2C9 and VKORC1 polymorphisms are differently distributed in the Brazilian population according to self-declared ethnicity or genetic ancestry. Genet. Test. Mol. Biomarkers 16 957–963 10.1089/gtmb.2012.0019
    1. Spruell T., Colavita G., Donegan T., Egawhary M., Hurley M., Aveyard P., et al. (2012). Association between nicotinic acetylcholine receptor single nucleotide polymorphisms and smoking cessation. Nicotine Tob. Res. 14 993–997 10.1093/ntr/ntr246
    1. Swan G. E., Javitz H. S., Jack L. M., Wessel J., Michel M., Hinds D. A., et al. (2012). Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 12 349–358 10.1038/tpj.2011.19
    1. Swan G. E., Lessov-Schlaggar C. N. (2009). Tobacco addiction and pharmacogenetics of nicotine metabolism. J. Neurogenet. 23 262–271 10.1080/01677060802572903
    1. Tapper A. R., McKinney S. L., Nashmi R., Schwarz J., Deshpande P., Labarca C., et al. (2004). Nicotine activation of alpha4∗ receptors: sufficient for reward, tolerance, and sensitization. Science 306 1029–1032 10.1126/science.1099420
    1. Tsai S. J., Yeh H. L., Hong C. J., Liou Y. J., Yang A. C., Liu M. E., et al. (2012). Association of CHRNA4 polymorphism with depression and loneliness in elderly males. Genes Brain Behav. 11 230–234 10.1111/j.1601-183X.2011.00741.x
    1. Wei J., Chu C., Wang Y., Yang Y., Wang Q., Li T., et al. (2012). Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict. Behav. 37 622–626 10.1016/j.addbeh.2012.01.009
    1. Wessel J., McDonald S. M., Hinds D. A., Stokowski R. P., Javitz H. S., Kennemer M., et al. (2010). Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerstrom test for nicotine dependence. Neuropsychopharmacology 35 2392–2402 10.1038/npp.2010.120
    1. Winterer G., Rujescu D., Maier W., Steinlein O. K., Bertrand D. (2011). CHRNA4 Exon 5 genotype affects nicotinic receptor sensitivity and is associated with clinically high-functioning schizophrenia rapid drug treatment-response and superior prefrontal function. Paper Presented at the Nicotinic Acetylcholine Receptors, Wellcome Trust Conference Hinxton.
    1. Xian H., Scherrer J. F., Madden P. A., Lyons M. J., Tsuang M., True W. R., et al. (2003). The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob. Res. 5 245–254 10.1080/1462220031000073667
    1. Zoli M., Lena C., Picciotto M. R., Changeux J. P. (1998). Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J. Neurosci. 18 4461–4472.

Source: PubMed

3
Abonnere