Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites

Mona Darwish, Mary Bond, Edward Hellriegel, Philmore Robertson Jr, James P Chovan, Mona Darwish, Mary Bond, Edward Hellriegel, Philmore Robertson Jr, James P Chovan

Abstract

Purpose: Bendamustine is a unique alkylating agent indicated for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B cell non-Hodgkin's lymphoma. Despite the extensive experience with bendamustine, its pharmacokinetic profile has only recently been described. This overview summarizes the pharmacokinetics, pharmacokinetic/pharmacodynamic relationships, and drug-drug interactions of bendamustine in adult and pediatric patients with hematologic malignancies.

Methods: A literature search and data on file (including a human mass balance study, pharmacokinetic population analyses in adult and pediatric patients, and modeling analyses) were evaluated for inclusion.

Results: Bendamustine concentrations peak at end of intravenous infusion (~1 h). Subsequent elimination is triphasic, with the intermediate t 1/2 (~40 min) as the effective t 1/2 since the final phase represents <1 % of the area under the curve. Bendamustine is rapidly hydrolyzed to monohydroxy-bendamustine and dihydroxy-bendamustine, which have little or no activity. Cytochrome P450 (CYP) 1A2 oxidation yields the active metabolites γ-hydroxybendamustine and N-desmethyl-bendamustine, at low concentrations, which contribute minimally to cytotoxicity. Minor involvement of CYP1A2 in bendamustine elimination suggests a low likelihood of drug-drug interactions with CYP1A2 inhibitors. Systemic exposure to bendamustine 120 mg/m(2) is comparable between adult and pediatric patients; age, race, and sex have been shown to have no significant effect on systemic exposure in either population. The effect of hepatic/renal impairment on bendamustine pharmacokinetics remains to be elucidated. Higher bendamustine concentrations may be associated with increased probability of nausea or infection. No clear exposure-efficacy response relationship has been observed.

Conclusions: Altogether, the findings support dosing based on body surface area for most patient populations.

Figures

Fig. 1
Fig. 1
Bendamustine and its main metabolites. Reproduced with permission of ASPET [23]
Fig. 2
Fig. 2
Effect of body surface area on systemic exposure. a The line represents a linear regression. bBoxes are 25th, 50th, and 75th percentiles; whiskers are 5th and 95th percentiles. The numbers above the box represent the number of patients. Pediatrics panel: adapted with permission of Informa Healthcare [27]
Fig. 3
Fig. 3
Effect of age on systemic exposure. Boxes are 25th, 50th, and 75th percentiles; whiskers are 5th and 95th percentiles. Asterisks are data points outside this range. The numbers above the box represent the number of patients. Pediatrics panel: adapted with permission of Informa Healthcare [27]
Fig. 4
Fig. 4
Effect of hepatic impairment on systemic exposure. Boxes are 25th, 50th, and 75th percentiles; whiskers are 5th and 95th percentiles. Asterisks are data points outside this range. The numbers above the box represent the number of patients. Pediatrics panel: adapted with permission of Informa Healthcare [27]
Fig. 5
Fig. 5
Effect of renal impairment on systemic exposure. Boxes are 25th, 50th, and 75th percentiles; whiskers are 5th and 95th percentiles. Asterisks are data points outside this range. Triangles show individual data points for patients with mild renal dysfunction. The numbers above the box represent the number of patients. Pediatrics panel: adapted with permission of Informa Healthcare [27]
Fig. 6
Fig. 6
Pharmacokinetics in presence or absence of CYP1A2 inhibitors/inducers. Boxes are 25th, 50th, and 75th percentiles; whiskers are 5th and 95th percentiles. The numbers above the box represent the number of patients. Adapted with permission of Informa Healthcare [27]
Fig. 7
Fig. 7
Kaplan–Meier plot of PFS, stratified by median bendamustine AUC. With kind permission from Springer Science+Business Media: Figure 5 [17]

References

    1. Leoni LM, Bailey B, Reifert J, et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin Cancer Res. 2008;14:309–317. doi: 10.1158/1078-0432.CCR-07-1061.
    1. Fowler N, Kahl BS, Lee P, et al. Bortezomib, bendamustine, and rituximab in patients with relapsed or refractory follicular lymphoma: the phase II VERTICAL study. J Clin Oncol. 2011;29:3389–3395. doi: 10.1200/JCO.2010.32.1844.
    1. Friedberg JW, Cohen P, Chen L, et al. Bendamustine in patients with rituximab-refractory indolent and transformed non-Hodgkin’s lymphoma: results from a phase II multicenter, single-agent study. J Clin Oncol. 2008;26:204–210. doi: 10.1200/JCO.2007.12.5070.
    1. Pönisch W, Rozanski M, Goldschmidt H, et al. Combined bendamustine, prednisolone and thalidomide for refractory or relapsed multiple myeloma after autologous stem-cell transplantation or conventional chemotherapy: results of a phase I clinical trial. Br J Haematol. 2008;143:191–200. doi: 10.1111/j.1365-2141.2008.07076.x.
    1. Ohmachi K, Ando K, Ogura M, et al. Multicenter phase II study of bendamustine for relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Cancer Sci. 2010;101:2059–2064. doi: 10.1111/j.1349-7006.2010.01635.x.
    1. Warsch S, Hosein PJ, Maeda LS, Alizadeh AA, Lossos IS. A retrospective study evaluating the efficacy and safety of bendamustine in the treatment of mantle cell lymphoma. Leuk Lymphoma. 2012;53:1299–1305. doi: 10.3109/10428194.2011.649476.
    1. Teva Branded Pharmaceutical Products R&D, Inc (2013) TREANDA® (bendamustine hydrochloride) prescribing information . Accessed 28 Oct 2014
    1. Knauf WU, Lissichkov T, Aldaoud A, et al. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009;27:4378–4384. doi: 10.1200/JCO.2008.20.8389.
    1. Robinson KS, Williams ME, van der Jagt RH, et al. Phase II multicenter study of bendamustine plus rituximab in patients with relapsed indolent B-cell and mantle cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:4473–4479. doi: 10.1200/JCO.2008.17.0001.
    1. Strumberg D, Harstrick A, Doll K, Hoffmann B, Seeber S. Bendamustine hydrochloride activity against doxorubicin-resistant human breast carcinoma cell lines. Anticancer Drugs. 1996;7:415–421. doi: 10.1097/00001813-199606000-00007.
    1. Ozegowski W, Krebs D. IMET 3393, γ-[1-methyl-5-bis(β-chloroethyl)-amino-benzimidazolyl-2]-butyric acid hydrochloride, a new cytostatic agent from among the series of benzimidazole mustard compounds. Zbl Pharm. 1971;110:1013–1019.
    1. Hirschberg E, Gellhorn A, Gump WS. Laboratory evaluation of a new nitrogen mustard, 2-[di-(2-chloroethyl)amino-methyl]benzimidazole, and of other 2-chloroethyl compounds. Cancer Res. 1957;17:904–910.
    1. Woolley DW. Some biological effects produced by benzimidazole and their reversal by purines. J Biol Chem. 1944;152:225–232.
    1. Preiss R, Sohr R, Matthias M, Brockmann B, Huller H. The pharmacokinetics of bendamustine (Cytostasane) in humans. Pharmazie. 1985;40:782–784.
    1. Weber H, Amlacher R, Preiss R, Hoffmann H. Pharmacokinetics of bendamustine (Cytostasan) in B6D2F1-mice. Pharmazie. 1991;46:589–591.
    1. Teichert J, Baumann F, Chao Q, et al. Characterization of two phase I metabolites of bendamustine in human liver microsomes and in cancer patients treated with bendamustine hydrochloride. Cancer Chemother Pharmacol. 2007;59:759–770. doi: 10.1007/s00280-006-0331-5.
    1. Owen JS, Melhem M, Passarell JA, D’Andrea D, Darwish M, Kahl B. Bendamustine pharmacokinetic profile and exposure-response relationships in patients with indolent non-Hodgkin’s lymphoma. Cancer Chemother Pharmacol. 2010;66:1039–1049. doi: 10.1007/s00280-010-1254-8.
    1. Dubbelman A-C, Rosing H, Darwish M, et al. Pharmacokinetics and excretion of 14C-bendamustine in patients with relapsed or refractory malignancy. Drugs R D. 2013;13:17–28. doi: 10.1007/s40268-012-0001-5.
    1. Haase D, Preiss R, Sohr R. Untersuchungen zur plasmaeiweisbindung von bendamustin (Cytostasan) und ambazone. Z Klin Med. 1990;45:1267–1271.
    1. Bezek S, Kukan M, Scasnár V, Lukácsová M, Trnovec T. Selective uptake of the anticancer drug bendamustine by liver and kidney tissues following its intravenous administration to mice. Methods Find Exp Clin Pharmacol. 1996;18:117–122.
    1. Kanekal S, Crain B, Elliott G (2004) SDX-105 (Treanda™) enhances the tumor growth inhibitory effect of rituximab in Daudi lymphoma xenografts. Blood (ASH Annual Meeting Abstracts) 104:229b. [Abstract 4580]
    1. Ackler S, Mitten MJ, Chen J, et al. Navitoclax (ABT-263) and bendamustine±rituximab induce enhanced killing of non-Hodgkin’s lymphoma tumours in vivo. Br J Pharmacol. 2012;167:881–891. doi: 10.1111/j.1476-5381.2012.02048.x.
    1. Dubbelman A-C, Jansen RS, Rosing H, Darwish M, Hellriegel E, Robertson P, Jr, Schellens JHM, Beijnen JH. Metabolite profiling of bendamustine in urine of cancer patients after administration of [14C]bendamustine. Drug Metab Dispos. 2012;40:1297–1307. doi: 10.1124/dmd.112.045229.
    1. Chovan JP, Li F, Yu E, Ring SC. Metabolic profile of [14C]bendamustine in rat urine and bile: preliminary structural identification of metabolites. Drug Metab Dispos. 2007;35:1744–1753. doi: 10.1124/dmd.107.015958.
    1. Beumer JH, Beijnen JH, Schellens JH. Mass balance studies, with a focus on anticancer drugs. Clin Pharmacokinet. 2006;45:33–58. doi: 10.2165/00003088-200645010-00003.
    1. Fraser C, Brown P, Megason G, et al. Open-label bendamustine monotherapy for pediatric patients with relapsed or refractory acute leukemia: efficacy and tolerability. J Pediatr Hematol Oncol. 2014;36:e212–e218. doi: 10.1097/MPH.0000000000000021.
    1. Darwish M, Megason G, Bond M, Hellriegel E, Robertson P, Jr, Grasela T, Phillips L. Population pharmacokinetics and pharmacokinetic/pharmacodynamics of bendamustine in pediatric patients with relapsed/refractory acute leukemia. Curr Med Res Opin. 2014;30(11):2305–2315. doi: 10.1185/03007995.2014.941976.
    1. Ogura M, Uchida T, Taniwaki M, et al. Phase I and pharmacokinetic study of bendamustine hydrochloride in relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Cancer Sci. 2010;101:2054–2058. doi: 10.1111/j.1349-7006.2010.01633.x.
    1. Ogura M, Ando K, Taniwaki M, et al. Feasibility and pharmacokinetic study of bendamustine hydrochloride in combination with rituximab in relapsed or refractory aggressive B cell non-Hodgkin’s lymphoma. Cancer Sci. 2011;102:1687–1692. doi: 10.1111/j.1349-7006.2011.01994.x.
    1. Schoppmeyer K, Kreth F, Wiedmann M, Mössner J, Preiss R, Caca K. A pilot study of bendamustine in advanced bile duct cancer. Anticancer Drugs. 2007;18:697–702. doi: 10.1097/CAD.0b013e32803d36e6.
    1. McCloskey JK, Broome CM, Cheson BD. Safe and effective treatment of aggressive non-Hodgkin lymphoma with rituximab and bendamustine in patients with severe liver impairment. Clin Adv Hematol Oncol. 2013;11:184–188.
    1. Preiss R, Teichert J, Pönisch W, Niederwieser D, Matthias M, Merkle K. Bendamustine in patients with multiple myeloma and renal insufficiency. Onkologie. 2003;26:S131.
    1. Nordstrom BL, Knopf KB, Teltsch DY, Engle R, Beygi H, Sterchele JA. The safety of bendamustine in patients with chronic lymphocytic leukemia or non-Hodgkin lymphoma and concomitant renal impairment: a retrospective electronic medical record database analysis. Leuk Lymphoma. 2014;55:1266–1273. doi: 10.3109/10428194.2013.836600.
    1. Pönisch W, Andrea M, Wagner I, et al. Successful treatment of patients with newly diagnosed/untreated multiple myeloma and advanced renal failure using bortezomib in combination with bendamustine and prednisone. J Cancer Res Clin Oncol. 2012;138:1405–1412. doi: 10.1007/s00432-012-1212-4.
    1. Pönisch W, Moll B, Bourgeois M, et al. Bendamustine and prednisone in combination with bortezomib (BPV) in the treatment of patients with relapsed or refractory multiple myeloma and light chain-induced renal failure. J Cancer Res Clin Oncol. 2013;139:1937–1946. doi: 10.1007/s00432-013-1513-2.
    1. Ramasamy K, Hazel B, Mahmood S, Corderoy S, Schey S. Bendamustine in combination with thalidomide and dexamethasone is an effective therapy for myeloma patients with end stage renal disease. Br J Haematol. 2011;155:632–634. doi: 10.1111/j.1365-2141.2011.08754.x.
    1. National Kidney Foundation, Inc Part 4. Definition and classification of stages of chronic kidney disease. Am J Kidney Dis. 2002;39:S46–S75. doi: 10.1053/ajkd.2002.30943.
    1. Gale RP, Caligaris-Cappio F, Dighiero G, Keating M, Montserrat E, Rai K. Recent progress in chronic lymphocytic leukemia. International workshop on chronic lymphocytic leukemia. Leukemia. 1994;8:1610–1614.
    1. Wolowiec D, Benchaib M, Pernas P, et al. Expression of cell cycle regulatory proteins in chronic lymphocytic leukemias. Comparison with non-Hodgkin’s lymphomas and non-neoplastic lymphoid tissue. Leukemia. 1995;9:1382–1388.
    1. Delmer A, Ajchenbaum-Cymbalista F, Tang R, et al. Overexpression of cyclin D2 in chronic B-cell malignancies. Blood. 1995;85:2870–2876.
    1. Vrhovac R, Delmer A, Tang R, Marie J-P, Zittoun R, Ajchenbaum-Cymbalista F. Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood. 1998;91:4694–4700.
    1. Schwänen C, Hecker T, Hübinger G, et al. In vitro evaluation of bendamustine induced apoptosis in B-chronic lymphocytic leukemia. Leukemia. 2002;16:2096–2105. doi: 10.1038/sj.leu.2402651.
    1. Rummel MJ, Al-Batran SE, Kim SZ, et al. Bendamustine plus rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and low-grade non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:3383–3389. doi: 10.1200/JCO.2005.08.100.
    1. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–1210. doi: 10.1016/S0140-6736(12)61763-2.
    1. Flinn IW, van der Jagt R, Kahl BS, et al. Open-label, randomized, noninferiority study of bendamustine–rituximab or R-CHOP/R-CVP in first-line treatment of advanced indolent NHL or MCL: the BRIGHT study. Blood. 2014;123:2944–2952. doi: 10.1182/blood-2013-11-531327.
    1. Blasco H, Chatelut E, de Bretagne IB, Congy-Jolivet N, Le Guellec C. Pharmacokinetics of rituximab associated with CHOP chemotherapy in B-cell non-Hodgkin’s lymphoma. Fundam Clin Pharmacol. 2009;23:601–608. doi: 10.1111/j.1472-8206.2009.00714.x.
    1. Cartron G, Blasco H, Paintaud G, Watier H, Le Guellec C. Pharmacokinetics of rituximab and its clinical use: thought for the best use? Crit Rev Oncol Hematol. 2007;62:43–52. doi: 10.1016/j.critrevonc.2006.09.004.
    1. Seitz K, Zhou H. Pharmacokinetic drug–drug interaction potentials for therapeutic monoclonal antibodies: reality check. J Clin Pharmacol. 2007;47:1104–1118. doi: 10.1177/0091270007306958.
    1. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:493–507. doi: 10.2165/11531280-000000000-00000.
    1. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45:792–801. doi: 10.1177/0091270005277075.
    1. Li J, Levi M, Charoin J-E, et al. Rituximab exhibits a long half-life based on a population pharmacokinetic analysis in non-Hodgkin’s lymphoma (NHL) patients. Blood. 2007;110:700.
    1. Darwish M, Burke JM, Hellriegel E, et al. An evaluation of the potential for drug-drug interactions between bendamustine and rituximab in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Cancer Chemother Pharmacol. 2014;73:1119–1127. doi: 10.1007/s00280-014-2445-5.
    1. Regazzi MB, Iacona I, Avanzini MA, et al. Pharmacokinetic behavior of rituximab: a study of different schedules of administration for heterogeneous clinical settings. Ther Drug Monit. 2005;27:785–792. doi: 10.1097/01.ftd.0000184162.60197.c1.
    1. Berinstein NL, Grillo-López AJ, White CA, et al. Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001. doi: 10.1023/A:1008416911099.
    1. Iacona I, Lazzarino M, Avanzini MA, et al. Rituximab (IDEC-C2B8): validation of a sensitive enzyme-linked immunoassay applied to a clinical pharmacokinetic study. Ther Drug Monit. 2000;22:295–301. doi: 10.1097/00007691-200006000-00010.
    1. Lazzarino M, Arcaini L, Bernasconi P, et al. A sequence of immune-chemotherapy with rituximab, mobilization of in vivo purged stem cells, high-dose chemotherapy and autotransplant is an effective and non-toxic treatment for advanced follicular and mantle cell lymphoma. Br J Haematol. 2002;116:229–235. doi: 10.1046/j.1365-2141.2002.03256.x.

Source: PubMed

3
Abonnere