A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations

Guillaume Canaud, Adrienne M Hammill, Denise Adams, Miikka Vikkula, Kim M Keppler-Noreuil, Guillaume Canaud, Adrienne M Hammill, Denise Adams, Miikka Vikkula, Kim M Keppler-Noreuil

Abstract

Background: PIK3CA-related disorders include vascular malformations and overgrowth of various tissues that are caused by postzygotic, somatic variants in the gene encoding phosphatidylinositol-3-kinase (PI3K) catalytic subunit alpha. These mutations result in activation of the PI3K/AKT/mTOR signaling pathway. The goals of this review are to provide education on the underlying mechanism of disease for this group of rare conditions and to summarize recent advancements in the understanding of, as well as current and emerging treatment options for PIK3CA-related disorders.

Main body: PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. Somatic activating mutations (predominantly in hotspots in the helical and kinase domains of PIK3CA, but also in other domains), lead to hyperactivation of the PI3K signaling pathway, which results in abnormal tissue growth. Diagnosis is complicated by the variability and overlap in phenotypes associated with PIK3CA-related disorders and should be performed by clinicians with the required expertise along with coordinated care from a multidisciplinary team. Although tissue mosaicism presents challenges for confirmation of PIK3CA mutations, next-generation sequencing and tissue selection have improved detection. Clinical improvement, radiological response, and patient-reported outcomes are typically used to assess treatment response in clinical studies of patients with PIK3CA-related disorders, but objective assessment of treatment response is difficult using imaging (due to the heterogeneous nature of these disorders, superimposed upon patient growth and development). Despite their limitations, patient-reported outcome tools may be best suited to gauge patient improvement. New therapeutic options are needed to provide an alternative or supplement to standard approaches such as surgery and sclerotherapy. Currently, there are no systemic agents that have regulatory approval for these disorders, but the mTOR inhibitor sirolimus has been used for several years in clinical trials and off label to address symptoms. There are also other agents under investigation for PIK3CA-related disorders that act as inhibitors to target different components of the PI3K signaling pathway including AKT (miransertib) and PI3K alpha (alpelisib).

Conclusion: Management of patients with PIK3CA-related disorders requires a multidisciplinary approach. Further results from ongoing clinical studies of agents targeting the PI3K pathway are highly anticipated.

Keywords: Alpelisib; Miransertib; PI3K; PIK3CA; PROS; Sirolimus; Vascular malformation.

Conflict of interest statement

G. Canaud: Personal fees from Novartis, Fresenius Medical Care, and BridgeBio; patent pending (WO2017140828A1). A. Hammill: Consultant and clinical trial contact for Novartis; clinical trial contact for ArQule/Merck and Venthera; compound received from Pfizer for investigator-initiated studies. D. Adams: Consultant to Novartis/Venthera. M. Vikkula: Consultant to Venthera. KMK-N: Investigator on clinical trial with Alpelisib.

Figures

Fig. 1
Fig. 1
The PI3K signaling pathway and inhibitors under investigation. Because PIK3CA mutations underlie the pathogenesis of PIK3CA-related disorders, there are multiple strategies for targeting the PI3K pathway under investigation [6, 8]. AKT: protein kinase B; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; BAD: Bcl-2-associated death promoter; CDC42: Cell division control protein 42 homolog; ERK: extracellular signal regulated kinase; FKHR: forkhead; GDP: guanosine diphosphate; GPCR, G protein-coupled receptor; Grb2: growth factor receptor-bound protein 2; GSK3: glycogen synthase kinase 3; GTP: guanosine-5'-triphosphate; IRS: insulin receptor substrate; LKB1: liver kinase B1; MAPK: mitogen-activated protein kinase; MDM2: mouse double minute 2; mTOR: mammalian target of rapamycin; NF-κB: nuclear factor kappa B; P: phosphate; PI3K: phosphatidylinositol-3-kinase; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-triphosphate; PKA: protein kinases A; PKC: protein kinase C; PROS: PIK3CA-related overgrowth spectrum; PTEN: phosphatase and tensin homolog; RAC1: Ras-related C3 botulinum toxin substrate 1; Ras: rat sarcoma; RTK, receptor tyrosine kinase; SGK: serum- and glucocorticoid-inducible kinase; Src: rous sarcoma; TIE2, angiopoietin-1 receptor. Adapted with permission from Hennessy 2005 [7]
Fig. 2
Fig. 2
PIK3CA-related disorders. The category of PIK3CA-related disorders can be divided into 3 subcategories: PROS, PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. CLAPO: capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry and partial/generalized overgrowth; CLOVES: congenital lipomatous overgrowth, vascular malformations, epidermal nevi, scoliosis/skeletal and spinal; CLVM: combined capillary-lymphatic-venous malformation; DCMO: diffuse capillary malformation with overgrowth; DMEG: dysplastic megalencephaly; FAO/HHML: fibroadipose hyperplasia or overgrowth/hemihyperplasia-multiple lipomatosis; FAVA: fibroadipose vascular anomaly; FIL: fibroadipose or facial infiltrating lipomatosis; GLA, generalized lymphatic anomaly; HH: hemihyperplasia; HMEG: hemimegalencephaly; LM, lymphatic malformation; LON: lipomatosis of nerve; LVM: combined lymphatic-venous malformation; MCAP: megalencephaly-capillary malformation; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; VM, venous malformation. *Malformations that are composed of only one type of vessel are classified as “simple” (with the exception of arteriovenous malformation). If a lesion contains ≥ 2 types of vascular malformations, it is classified as “combined.” Vascular malformations are also classified according to major named vessels or by association with other anomalies (e.g., PROS) Wassef 2015 [33]. †Some common (cystic) LM are classified as PROS when they are associated with overgrowth ISSVA 2018 [2]. ‡Can occur as isolated lesions or with other clinical features. Supporting Sources: PIK3CA-related overgrowth spectrum: Keppler-Noreuil 2015 [3]; ISSVA 2018 [2]; Goss 2020 [28]; Hughes 2020 [29]; Mahan 2014 [30]; Rios 2013 [31]; Rodriguez-Laguna 2019 [32]; PIK3CA-related vascular malformations: ISSVA 2018 [2]; Rodriguez-Laguna 2019 [32]; PIK3CA-related nonvascular lesions: Keppler-Noreuil 2015 [3]; Combined vascular malformations: Wassef 2015 [33]; Brandigi 2018 [27]

References

    1. Parker VER, Keppler-Noreuil KM, Faivre L, Luu M, Oden NL, De Silva L, et al. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet Med. 2019;21(5):1189–1198. doi: 10.1038/s41436-018-0297-9.
    1. International Society for the Study of Vascular Anomalies. ISSVA classification for vascular anomalies. Revised 2018. .
    1. Keppler-Noreuil KM, Rios JJ, Parker VE, Semple RK, Lindhurst MJ, Sapp JC, et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–295. doi: 10.1002/ajmg.a.36836.
    1. Limaye N, Kangas J, Mendola A, Godfraind C, Schlogel MJ, Helaers R, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97(6):914–921. doi: 10.1016/j.ajhg.2015.11.011.
    1. Biesecker LG, Adam MP, Alkuraya FS, Amemiya AR, Bamshad MJ, Beck AE, et al. A dyadic approach to the delineation of diagnostic entities in clinical genomics. Am J Hum Genet. 2021;108(1):8–15. doi: 10.1016/j.ajhg.2020.11.013.
    1. Adams DM, Ricci KW. Vascular anomalies: diagnosis of complicated anomalies and new medical treatment options. Hematol Oncol Clin North Am. 2019;33(3):455–470. doi: 10.1016/j.hoc.2019.01.011.
    1. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004. doi: 10.1038/nrd1902.
    1. Hillmann P, Fabbro D. PI3K/mTOR pathway inhibition: opportunities in oncology and rare genetic diseases. Int J Mol Sci. 2019;20(22):5792. doi: 10.3390/ijms20225792.
    1. Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am J Med Genet C Semin Med Genet. 2016;172(4):402–421. doi: 10.1002/ajmg.c.31531.
    1. Nguyen HL, Boon LM, Vikkula M. Vascular anomalies caused by abnormal signaling within endothelial cells: targets for novel therapies. Semin Intervent Radiol. 2017;34(3):233–238. doi: 10.1055/s-0037-1604296.
    1. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–635. doi: 10.1016/j.cell.2017.07.029.
    1. Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N Engl J Med. 2018;379(21):2052–2062. doi: 10.1056/NEJMra1704560.
    1. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–644. doi: 10.1038/nrd2926.
    1. Natynki M, Kangas J, Miinalainen I, Sormunen R, Pietila R, Soblet J, et al. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet. 2015;24(22):6374–6389. doi: 10.1093/hmg/ddv349.
    1. Uebelhoer M, Natynki M, Kangas J, Mendola A, Nguyen HL, Soblet J, et al. Venous malformation-causative TIE2 mutations mediate an AKT-dependent decrease in PDGFB. Hum Mol Genet. 2013;22(17):3438–3448. doi: 10.1093/hmg/ddt198.
    1. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41(1):118–124. doi: 10.1038/ng.272.
    1. Soblet J, Kangas J, Natynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue Rubber Bleb Nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol. 2017;137(1):207–216. doi: 10.1016/j.jid.2016.07.034.
    1. Gymnopoulos M, Elsliger MA, Vogt PK. Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA. 2007;104(13):5569–5574. doi: 10.1073/pnas.0701005104.
    1. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8(332):332ra42. doi: 10.1126/scitranslmed.aaf1164.
    1. Martinez-Corral I, Zhang Y, Petkova M, Ortsater H, Sjoberg S, Castillo SD, et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun. 2020;11(1):2869. doi: 10.1038/s41467-020-16496-y.
    1. Van Damme A, Seront E, Dekeuleneer V, Boon LM, Vikkula M. New and emerging targeted therapies for vascular malformations. Am J Clin Dermatol. 2020;21(5):657–668. doi: 10.1007/s40257-020-00528-w.
    1. Boscolo E, Limaye N, Huang L, Kang KT, Soblet J, Uebelhoer M, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest. 2015;125(9):3491–3504. doi: 10.1172/JCI76004.
    1. Mirzaa G, Timms AE, Conti V, Boyle EA, Girisha KM, Martin B, et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623. doi: 10.1172/jci.insight.87623.
    1. Brouillard P, Schlögel MJ, Homayun Sepehr N, Helaers R, Queisser A, Fastré E, et al. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. Orphanet J Rare Dis. 2021;16:267. doi: 10.1186/s13023-021-01898-y.
    1. Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18(R1):R65–74. doi: 10.1093/hmg/ddp002.
    1. Nguyen HL, Boon LM, Vikkula M. Genetics of vascular malformations. Semin Pediatr Surg. 2014;23(4):221–226. doi: 10.1053/j.sempedsurg.2014.06.014.
    1. Brandigi E, Torino G, Messina M, Molinaro F, Mazzei O, Matucci T, et al. Combined capillary-venous-lymphatic malformations without overgrowth in patients with Klippel–Trenaunay syndrome. J Vasc Surg Venous Lymphat Disord. 2018;6(2):230–236. doi: 10.1016/j.jvsv.2017.09.011.
    1. Goss JA, Konczyk DJ, Smits P, Sudduth CL, Bischoff J, Liang MG, et al. Diffuse capillary malformation with overgrowth contains somatic PIK3CA variants. Clin Genet. 2020;97(5):736–740. doi: 10.1111/cge.13702.
    1. Hughes M, Hao M, Luu M. PIK3CA vascular overgrowth syndromes: an update. Curr Opin Pediatr. 2020;32(4):539–546. doi: 10.1097/MOP.0000000000000923.
    1. Mahan MA, Amrami KK, Howe BM, Spinner RJ. Segmental thoracic lipomatosis of nerve with nerve territory overgrowth. J Neurosurg. 2014;120(5):1118–1124. doi: 10.3171/2013.12.JNS13174.
    1. Rios JJ, Paria N, Burns DK, Israel BA, Cornelia R, Wise CA, et al. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum Mol Genet. 2013;22(3):444–451. doi: 10.1093/hmg/dds440.
    1. Rodriguez-Laguna L, Agra N, Ibanez K, Oliva-Molina G, Gordo G, Khurana N, et al. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J Exp Med. 2019;216(2):407–418. doi: 10.1084/jem.20181353.
    1. Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, et al. Vascular anomalies classification: recommendations from the international society for the Study of Vascular Anomalies. Pediatrics. 2015;136(1):e203–e214. doi: 10.1542/peds.2014-3673.
    1. Nathan N, Keppler-Noreuil KM, Biesecker LG, Moss J, Darling TN. Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol Clin. 2017;35(1):51–60. doi: 10.1016/j.det.2016.07.001.
    1. Boon LM, Vikkula M. Vascular malformations. In: Hoeger P, et al., editors. Harper’s Textbook of Pediatric Dermatology. Wiley; 2019. p. 1399–424.
    1. Dekeuleneer V, Seront E, Van Damme A, Boon LM, Vikkula M. Theranostic advances in vascular malformations. J Invest Dermatol. 2020;140(4):756–763. doi: 10.1016/j.jid.2019.10.001.
    1. Adams DM, Vikkula M, Blei F. Vascular anomalies 101: case-based discussion on the diagnosis, treatment and lifelong care of these patients. In: 62nd ASH annual meeting and exposition; December 5–8, 2020.
    1. Iacobas I, Adams DM, Pimpalwar S, Phung T, Blei F, Burrows P, et al. Multidisciplinary guidelines for initial evaluation of complicated lymphatic anomalies-expert opinion consensus. Pediatr Blood Cancer. 2020;67(1):e28036. doi: 10.1002/pbc.28036.
    1. Behravesh S, Yakes W, Gupta N, Naidu S, Chong BW, Khademhosseini A, et al. Venous malformations: clinical diagnosis and treatment. Cardiovasc Diagn Ther. 2016;6(6):557–569. doi: 10.21037/cdt.2016.11.10.
    1. Chang F, Liu L, Fang E, Zhang G, Chen T, Cao K, et al. Molecular diagnosis of mosaic overgrowth syndromes using a custom-designed next-generation sequencing panel. J Mol Diagn. 2017;19(4):613–624. doi: 10.1016/j.jmoldx.2017.04.006.
    1. Kuentz P, St-Onge J, Duffourd Y, Courcet JB, Carmignac V, Jouan T, et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 2017;19(9):989–997. doi: 10.1038/gim.2016.220.
    1. Piacitelli AM, Jensen DM, Brandling-Bennett H, Gray MM, Batra M, Gust J, et al. Characterization of a severe case of PIK3CA-related overgrowth at autopsy by droplet digital polymerase chain reaction and report of PIK3CA sequencing in 22 patients. Am J Med Genet A. 2018;176(11):2301–2308. doi: 10.1002/ajmg.a.40487.
    1. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, Darling T, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A. 2014;164A(7):1713–1733. doi: 10.1002/ajmg.a.36552.
    1. Tan WH, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, et al. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44(9):594–602. doi: 10.1136/jmg.2007.048934.
    1. Al-Olabi L, Polubothu S, Dowsett K, Andrews KA, Stadnik P, Joseph AP, et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J Clin Invest. 2018;128(11):5185. doi: 10.1172/JCI124649.
    1. Chacon-Camacho OF, Lopez-Moreno D, Morales-Sanchez MA, Hofmann E, Pacheco-Quito M, Wieland I, et al. Expansion of the phenotypic spectrum and description of molecular findings in a cohort of patients with oculocutaneous mosaic RASopathies. Mol Genet Genomic Med. 2019;7(5):e625. doi: 10.1002/mgg3.625.
    1. Gordon K, Varney R, Keeley V, Riches K, Jeffery S, Van Zanten M, et al. Update and audit of the St George's classification algorithm of primary lymphatic anomalies: a clinical and molecular approach to diagnosis. J Med Genet. 2020;57(10):653–659. doi: 10.1136/jmedgenet-2019-106084.
    1. Manevitz-Mendelson E, Leichner GS, Barel O, Davidi-Avrahami I, Ziv-Strasser L, Eyal E, et al. Somatic NRAS mutation in patient with generalized lymphatic anomaly. Angiogenesis. 2018;21(2):287–298. doi: 10.1007/s10456-018-9595-8.
    1. Barclay SF, Inman KW, Luks VL, McIntyre JB, Al-Ibraheemi A, Church AJ, et al. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genet Med. 2019;21(7):1517–1524. doi: 10.1038/s41436-018-0390-0.
    1. Mirzaa GM, Conway RL, Gripp KW, Lerman-Sagie T, Siegel DH, deVries LS, et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A(2):269–291. doi: 10.1002/ajmg.a.34402.
    1. Dompmartin A, Vikkula M, Boon LM. Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology. 2010;25(5):224–235. doi: 10.1258/phleb.2009.009041.
    1. Dompmartin A, Acher A, Thibon P, Tourbach S, Hermans C, Deneys V, et al. Association of localized intravascular coagulopathy with venous malformations. Arch Dermatol. 2008;144(7):873–877. doi: 10.1001/archderm.144.7.873.
    1. Adams DM, Trenor CC, III, Hammill AM, Vinks AA, Patel MN, Chaudry G, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257. doi: 10.1542/peds.2015-3257.
    1. Hammer J, Seront E, Duez S, Dupont S, Van Damme A, Schmitz S, et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase II study. Orphanet J Rare Dis. 2018;13(1):191. doi: 10.1186/s13023-018-0934-z.
    1. Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558(7711):540–546. doi: 10.1038/s41586-018-0217-9.
    1. Zampino G, Leoni C, Buonuomo PS, Rana I, Onesimo R, Macchiaiolo M, et al. An open-label, phase 1/2 study of miransertib (ARQ 092), an oral pan-AKT inhibitor, in patients (pts) with PIK3CA-related Overgrowth Spectrum (PROS) and Proteus Syndrome (PS): study design and preliminary results (NCT03094832). European Society of Human Genetics Conference; June 15–18, 2019; Gothenburg, Sweden. Abstract C 18.6.
    1. Seront E, Van Damme A, Boon LM, Vikkula M. Rapamycin and treatment of venous malformations. Curr Opin Hematol. 2019;26(3):185–192. doi: 10.1097/MOH.0000000000000498.
    1. Dompmartin A, Ballieux F, Thibon P, Lequerrec A, Hermans C, Clapuyt P, et al. Elevated D-dimer level in the differential diagnosis of venous malformations. Arch Dermatol. 2009;145(11):1239–1244. doi: 10.1001/archdermatol.2009.296.
    1. Ricci KW, Hammill AM, Mobberley-Schuman P, Nelson SC, Blatt J, Bender JLG, et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham–Stout disease. Pediatr Blood Cancer. 2019;66(5):e27614. doi: 10.1002/pbc.27614.
    1. Horbach SER, Rongen APM, Elbers RG, van der Horst C, Prinsen CAC, Spuls PI, et al. Outcome measurement instruments for peripheral vascular malformations and an assessment of the measurement properties: a systematic review. Qual Life Res. 2020;29(1):1–17. doi: 10.1007/s11136-019-02301-x.
    1. Horbach SER, van der Horst C, Blei F, van der Vleuten CJM, Frieden IJ, Richter GT, et al. Development of an international core outcome set for peripheral vascular malformations: the OVAMA project. Br J Dermatol. 2018;178(2):473–481. doi: 10.1111/bjd.16029.
    1. Lokhorst MM, Horbach SER, van der Horst C, Spuls PI, Group OS. Finalizing the international core domain set for peripheral vascular malformations: the OVAMA project. Br J Dermatol. 2019;181(5):1076–1078. doi: 10.1111/bjd.18043.
    1. Lokhorst MM, Horbach SER, Waner M, O TM, van der Vleuten CJM, Mokkink LB, et al. Responsiveness of quality-of-life measures in patients with peripheral vascular malformations: the OVAMA project. Br J Dermatol. 2020;182(6):1395–403.
    1. Lokhorst MM, Horbach SER, Waner M, O TM, van der Vleuten CJM, Spuls PI, et al. Responsiveness of quality of life measures in children with peripheral vascular malformations: the OVAMA project. JPRAS Open. 2021;27:70–79. doi: 10.1016/j.jpra.2020.11.013.
    1. Vazquez T, Forouzandeh M, Gurnani P, Akhtar S, Nouri K. Cutaneous vascular lesions in the pediatric population: a review of laser surgery applications and lesion-specific device parameters. Lasers Med Sci. 2020;35(8):1681–1687. doi: 10.1007/s10103-020-03058-3.
    1. Mulliken JB, Burrows PE, Fishman SJ. Mulliken and Young's vascular anomalies: hemangiomas and malformations. Oxford University Press; 2013.
    1. Mirzaa G, Conway R, Graham JM, Jr., Dobyns WB. PIK3CA-related segmental overgrowth. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle; 2013.
    1. Erickson J, McAuliffe W, Blennerhassett L, Halbert A. Fibroadipose vascular anomaly treated with sirolimus: successful outcome in two patients. Pediatr Dermatol. 2017;34(6):e317–e320. doi: 10.1111/pde.13260.
    1. Maruani A, Boccara O, Bessis D, Guibaud L, Vabres P, Mazereeuw-Hautier J, et al. Treatment of voluminous and complicated superficial slow-flow vascular malformations with sirolimus (PERFORMUS): protocol for a multicenter phase 2 trial with a randomized observational-phase design. Trials. 2018;19(1):340. doi: 10.1186/s13063-018-2725-1.
    1. Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, Elluru R, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57(6):1018–1024. doi: 10.1002/pbc.23124.
    1. Phase III multicentric study evaluating the efficacy and safety of sirolimus in vascular anomalies that are refractory to standard care. EudraCT number: 2015001703-32. .
    1. Rossler J, Baselga E, Davila V, Celis V, Diociaiuti A, El Hachem M, et al. Severe adverse events during sirolimus “off-label” therapy for vascular anomalies. Pediatr Blood Cancer. 2021;68(8):e28936.
    1. Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174(12):1579–1584. doi: 10.1007/s00431-015-2572-y.
    1. Leoni C, Onesimo R, Resta N, Patti ML, De Santis R, Bagnulo R, et al. Old treatments for new genetic conditions: sirolimus therapy in a child affected by mosaic overgrowth with fibroadipose hyperplasia. Clin Genet. 2019;96(1):102–103. doi: 10.1111/cge.13550.
    1. Ranieri C, Di Tommaso S, Loconte DC, Grossi V, Sanese P, Bagnulo R, et al. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS) Neurogenetics. 2018;19(2):77–91. doi: 10.1007/s10048-018-0540-1.
    1. Forde K, Resta N, Ranieri C, Rea D, Kubassova O, Hinton M, et al. Clinical experience with the AKT1 inhibitor miransertib in two children with PIK3CA-related overgrowth syndrome. Orphanet J Rare Dis. 2021;16(1):109. doi: 10.1186/s13023-021-01745-0.
    1. Piquray . Prescribing information. Novartis Pharmaceuticals Corporation; 2020.
    1. Lopez Gutierrez JC, Lizarraga R, Delgado C, Martinez Urrutia MJ, Diaz M, Miguel M, et al. Alpelisib treatment for genital vascular malformation in a patient with congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and spinal/skeletal anomalies and/or scoliosis (CLOVES) syndrome. J Pediatr Adolesc Gynecol. 2019;32(6):648–650. doi: 10.1016/j.jpag.2019.07.003.
    1. Garneau AP, Haydock L, Tremblay LE, Isenring P. Somatic non-cancerous PIK3CA-related overgrowth syndrome treated with alpelisib in North America. J Mol Med. 2021;99(3):311–313. doi: 10.1007/s00109-020-02030-6.
    1. Ozeki M, Fukao T. Generalized lymphatic anomaly and gorham-stout disease: overview and recent insights. Adv Wound Care (New Rochelle) 2019;8(6):230–245. doi: 10.1089/wound.2018.0850.
    1. Seront E, Vikkula M, Boon LM. Venous malformations of the head and neck. Otolaryngol Clin North Am. 2018;51(1):173–184. doi: 10.1016/j.otc.2017.09.003.

Source: PubMed

3
Abonnere