Understanding the persistence of plague foci in Madagascar

Voahangy Andrianaivoarimanana, Katharina Kreppel, Nohal Elissa, Jean-Marc Duplantier, Elisabeth Carniel, Minoarisoa Rajerison, Ronan Jambou, Voahangy Andrianaivoarimanana, Katharina Kreppel, Nohal Elissa, Jean-Marc Duplantier, Elisabeth Carniel, Minoarisoa Rajerison, Ronan Jambou

Abstract

Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Madagascar plague mapping from 2007…
Figure 1. Madagascar plague mapping from 2007 to 2011.
Dashed line: limits of the main plague foci (central and northern foci). Green area: districts that have notified plague cases. Most plague cases were reported from the district of Tsiroanomandidy during this period. (Sources: OCHA, Institut Pasteur de Madagascar).
Figure 2. Main vectors and rodent reservoirs…
Figure 2. Main vectors and rodent reservoirs in Madagascar.
Fleas involved in plague transmission in Madagascar: Synopsyllus fonquerniei female (1) and Synopsyllus fonquerniei male (3) are found on outdoor rats, whereas Xenopsylla cheopis female (2) and Xenopsylla cheopis male (4) live on indoor rats. Rat species involved in plague transmission in Madagascar: Rattus rattus (5) and Rattus norvegicus (6).
Figure 3. Plague transmission cycle.
Figure 3. Plague transmission cycle.
A) Plague cycle in the rural area of Madagascar. Rural plague foci of the highlands are organized into three habitats: houses (arrow), sisal hedges (arrowhead), and rice fields (star). The black rat, R. rattus (3), is the main rodent involved in transmission associated with X. cheopis (1) and the endemic flea S. fonquerniei (2). (Photo of plague foci: S. Rahelinirina). B) Plague cycle in the urban areas of Madagascar. Urban plague occurs mainly in the cities of Antananarivo (Isotry Market, left) (7) and Mahajanga (Abattoir suburb, right) (6). R. norvegicus (4) and X. cheopis (1) are involved in each focus. The Asian shrew (S. murinus) (5) has long been suspected to play a major role in the epidemiological cycle of plague in Mahajanga. C) Plague cycle in the forest area. A sylvatic transmission occurs in Madagascar with R. rattus (3) and endemic micromammals (such as Setifer setosus) (8) as reservoirs. S. fonquerniei (2) is the major vector of the disease in this area. The role of other endemic fleas (9) is not yet determined. (Photo of forest of Ampahitra: S. Telfer; Setifer setosus: V. Soarimalala).

References

    1. Perry RD, Fetherston JD (1997) Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev 10: 35–66.
    1. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, et al. (2008) Plague: past, present, and future. PLoS Med 5: e3 doi:
    1. Duplantier JM, Duchemin JB, Chanteau S, Carniel E (2005) From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet Res 36: 437–453.
    1. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, et al. (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 96: 14043–14048.
    1. Hinnebusch BJ (2005) The evolution of flea-borne transmission in Yersinia pestis . Curr Issues Mol Biol 7: 197–212.
    1. Gratz NG (1999) Rodent reservoirs and flea vectors of natural plague foci. In: Dennis DT, Gage KL, Gratz NG, Poland JD, Thikhomirov E, editors. Plague manual: epidemiology, distribution, surveillance and control, Chapter 4, Pub No WHO/CDS/CSR/EDC/992. Geneva: World Health Organization. pp. 63–96.
    1. Chanteau S (2006) Atlas de la peste à Madagascar. Paris: IRD Editions. pp. 94
    1. Zimba M, Pfukenyi D, Loveridge J, Mukaratirwa S (2011) Seasonal abundance of plague vector Xenopsylla brasiliensis from rodents captured in three habitat types of periurban suburbs of Harare, Zimbabwe. Vector Borne Zoonotic Dis 11: 1187–1192.
    1. Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, et al. (2006) Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103: 15380–15385.
    1. Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50: 505–528.
    1. Keim PS, Wagner DM (2009) Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol 7: 813–821.
    1. Pham HV, Dang DT, Tran Minh NN, Nguyen ND, Nguyen TV (2009) Correlates of environmental factors and human plague: an ecological study in Vietnam. Int J Epidemiol 38: 1634–1641.
    1. Keeling MJ, Gilligan CA (2000) Metapopulation dynamics of bubonic plague. Nature 407: 903–906.
    1. Rahelinirina S, Duplantier JM, Ratovonjato J, Ramilijaona O, Ratsimba M, et al. (2010) Study on the movement of Rattus rattus and evaluation of the plague dispersion in Madagascar. Vector Borne Zoonotic Dis 10: 77–84.
    1. Gage KL, Burkot TR, Eisen RJ, Hayes EB (2008) Climate and vectorborne diseases. Am J Prev Med 35: 436–450.
    1. Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, et al. (2006) Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A 103: 13110–13115.
    1. Cavanaugh DC, Marshall JD Jr (1972) The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. J Wildl Dis 8: 85–94.
    1. Schotthoefer AM, Bearden SW, Vetter SM, Holmes J, Montenieri JA, et al. (2011) Effects of temperature on early-phase transmission of Yersina pestis by the flea, Xenopsylla cheopis . J Med Entomol 48: 411–417.
    1. Brygoo ER (1966) Epidemiologie de la peste à Madagascar. Arch Inst Pasteur Madagascar 35: 9–147.
    1. Migliani R, Chanteau S, Rahalison L, Ratsitorahina M, Boutin JP, et al. (2006) Epidemiological trends for human plague in Madagascar during the second half of the 20th century: a survey of 20,900 notified cases. Trop Med Int Health 11: 1228–1237.
    1. WHO (2010) Human plague: review of regional morbidity and mortality, 2004–2009. Wkly Epidemiol Rec 6: 40–45.
    1. Guiyoule A, Rasoamanana B, Buchrieser C, Michel P, Chanteau S, et al. (1997) Recent emergence of new variants of Yersinia pestis in Madagascar. J Clin Microbiol 35: 2826–2833.
    1. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, et al. (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337: 677–680.
    1. Duchemin JB (2003) Biogéographie des puces de Madagascar [Thèse de doctorat]: Université de Paris XII - Val de Marne.
    1. Duchemin JB, Duplantier JM, Goodman SM, Ratovonjato J, Rahalison L, et al.. (2007) La peste à Madagascar: faune endémique et foyers sylvatiques. In: Signoli M, et al.., editors; Proceedings of the Conference: La peste : entre épidémies et sociétés, Marseille 23–26 juillet 2001. Firenze: Erga Edizioni Publishers.
    1. Duplantier JM, Rakotondravony D (1999) The rodent problem in Madagascar: agricultural pest and threat to human health. In: Singleton G., Linds L., Leirs H., Zhang Z, editors. Ecologically-based rodent management. Canberra: ACIA. pp. 441–459.
    1. Boisier P, Rahalison L, Rasolomaharo M, Ratsitorahina M, Mahafaly M, et al. (2002) Epidemiologic features of four successive annual outbreaks of bubonic plague in Mahajanga, Madagascar. Emerg Infect Dis 8: 311–316.
    1. Rahalison L, Ranjalahy M, Duplantier JM, Duchemin JB, Ravelosaona J, et al. (2003) Susceptibility to plague of the rodents in Antananarivo, Madagascar. Adv Exp Med Biol 529: 439–442.
    1. Kreppel K (2011) The effects of climate on the epidemiology of plague in Madagascar [PhD thesis]: University of Liverpool.
    1. Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S, et al. (2010) Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. Ecohealth 7: 242–247.
    1. Shepherd AJ, Leman PA, Hummitzsch DE (1986) Experimental plague infection in South African wild rodents. J Hyg (Lond) 96: 171–183.
    1. Andrianaivoarimanana V, Telfer S, Rajerison M, Ranjalahy MA, Andriamiarimanana F, et al. (2012) Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence? PLoS ONE 7: e38630 doi:
    1. Gilabert A, Loiseau A, Duplantier JM, Rahelinirina S, Rahalison L, et al. (2007) Genetic structure of black rat populations in a rural plague focus in Madagascar. Can J Zool 85: 965–972.
    1. Rahelinirina S (2009) Le risque pesteux dans les foyers ruraux du Moyen-Ouest malgache: déplacements et structuration des populations de rats noirs de l'échelle de l'habitat à celle du paysage [Thèse de doctorat]: Université d'Antananarivo.
    1. Styer KL, Click EM, Hopkins GW, Frothingham R, Aballay A (2007) Study of the role of CCR5 in a mouse model of intranasal challenge with Yersinia pestis . Microbes Infect 9: 1135–1138.
    1. Elvin SJ, Williamson ED, Scott JC, Smith JN, Perez De Lema G, et al. (2004) Evolutionary genetics: ambiguous role of CCR5 in Y. pestis infection. Nature 430: 417.
    1. Tollenaere C, Rahalison L, Ranjalahy M, Rahelinirina S, Duplantier JM, et al. (2008) CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar. Infect Genet Evol 8: 891–897.
    1. Tollenaere C, Duplantier JM, Rahalison L, Ranjalahy M, Brouat C (2011) AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection. Mol Ecol 20: 1026–1038.
    1. Duplantier JM, Duchemin JB, Ratsitorahina M, Rahalison L, Chanteau S (2001) [Resurgence of the plague in the Ikongo district of Madagascar in 1998. 2. Reservoirs and vectors implicated]. Bull Soc Pathol Exot 94: 119–122.
    1. Karimi Y (1963) [Natural Preservation of Plague in Soil]. Bull Soc Pathol Exot Filiales 56: 1183–1186.
    1. Mollaret HH (1963) [Experimental Preservation of Plague in Soil]. Bull Soc Pathol Exot Filiales 56: 1168–1182.
    1. Eisen RJ, Petersen JM, Higgins CL, Wong D, Levy CE, et al. (2008) Persistence of Yersinia pestis in soil under natural conditions. Emerg Infect Dis 14: 941–943.
    1. Boegler KA, Graham CB, Montenieri JA, MacMillan K, Holmes JL, et al. (2012) Evaluation of the infectiousness to mice of soil contaminated with Yersinia pestis-infected blood. Vector Borne Zoonotic Dis 12: 948–952.
    1. Vogler AJ, Chan F, Wagner DM, Roumagnac P, Lee J, et al. (2011) Phylogeography and molecular epidemiology of Yersinia pestis in Madagascar. PLoS Negl Trop Dis 5: e1319 doi:

Source: PubMed

3
Abonnere