Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency

Woo Jin Kim, Alice M Wood, Alan F Barker, Mark L Brantly, Edward J Campbell, Edward Eden, Gerard McElvaney, Stephen I Rennard, Robert A Sandhaus, James M Stocks, James K Stoller, Charlie Strange, Gerard Turino, Edwin K Silverman, Robert A Stockley, Dawn L Demeo, Woo Jin Kim, Alice M Wood, Alan F Barker, Mark L Brantly, Edward J Campbell, Edward Eden, Gerard McElvaney, Stephen I Rennard, Robert A Sandhaus, James M Stocks, James K Stoller, Charlie Strange, Gerard Turino, Edwin K Silverman, Robert A Stockley, Dawn L Demeo

Abstract

Background: The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.

Methods: The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.

Results: Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.

Conclusions: IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.

Figures

Figure 1
Figure 1
FEV1 by CHRNA3 genotype (rs1051730) in the AAT Genetic Modifiers Study cohort. Mean values (+ SEM) for a percent of predicted FEV1 are shown (p value = 0.02).
Figure 2
Figure 2
Linkage disequilibrium (LD) among SNPs analyzed in chromosome 15. LD values are presented as r2.

References

    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: Gold executive summary. Am J Respir Crit Care Med. 2007;176:532–555.
    1. DeMeo DL, Silverman EK. Alpha1-antitrypsin deficiency. 2: Genetic aspects of alpha-1-antitrypsin deficiency: Phenotypes and genetic modifiers of emphysema risk. Thorax. 2004;59:259–264.
    1. Wood AM, Needham M, Simmonds MJ, Newby PR, Gough SC, Stockley RA. Phenotype differences in alpha-1-deficient sibling pairs may relate to genetic variation. COPD. 2008;5:353–359.
    1. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with rapid decline of lung function in alpha-1-antitrypsin deficiency. Occup Environ Med. 2010;67:556–561.
    1. American Thoracic Society/European Respiratory Society statement. Standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168:818–900.
    1. Silverman EK, Province MA, Rao DC, Pierce JA, Campbell EJ. A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis. 1990;142:1015–1021.
    1. DeMeo DL, Campbell EJ, Brantly ML, Barker AF, Eden E, McElvaney NG, Rennard SI, Stocks JM, Stoller JK, Strange C, Turino G, Sandhaus RA, Silverman EK. Heritability of lung function in severe alpha-1 antitrypsin deficiency. Hum Hered. 2009;67:38–45.
    1. Novoradovsky A, Brantly ML, Waclawiw MA, Chaudhary PP, Ihara H, Qi L, Eissa NT, Barnes PM, Gabriele KM, Ehrmantraut ME, Rogliani P, Moss J. Endothelial nitric oxide synthase as a potential susceptibility gene in the pathogenesis of emphysema in alpha 1-antitrypsin deficiency. Am J Respir Cell Mol Biol. 1999;20:441–447.
    1. Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M. Glutathione s-transferase p1 and lung function in patients with alpha1-antitrypsin deficiency and COPD. Chest. 2005;127:1537–1543.
    1. Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA. The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir Res. 2008;9:52.
    1. DeMeo DL, Campbell EJ, Barker AF, Brantly ML, Eden E, McElvaney NG, Rennard SI, Sandhaus RA, Stocks JM, Stoller JK, Strange C, Turino G, Silverman EK. IL-10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol. 2008;38:114–120.
    1. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifaaon G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmendsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsater A, Flex A, Aben KK, de Vegt F. et al.A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–642.
    1. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Lilglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–637.
    1. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–622.
    1. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, Ruppert A, Lodrup Carlsen KC, Roses A, Anderson W, Rennard SI, Lomas DA, Silverman EK, Goldstein DB. ICGN Investigators. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 2009;5:1000421.
    1. Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, Lomas DA, Silverman EK. ECLIPSE and ICGN Investigators. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182:1498–1505.
    1. Lambrechts D, Buysschaert I, Zanen P, Coolen J, Lays N, Cuppens H, Groen HJ, Dewever W, van Klaveren RJ, Verschakelen J, Wijmenga C, Postma DS, Decramer M, Janssens W. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med. 2010;181:486–493.
    1. DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, Bueno R, Pillai SG, Lomas DA, Sparrow D, Shapiro SD, Criner GJ, Kim HP, Chen Z, Choi AM, Reilly J, Silverman EK. Integration of genomic and genetic approached implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85:493–502.
    1. DeMeo DL, Sandhaus RA, Barker AF, Brantly ML, Eden E, McElvaney NG, Rennard S, Burchard E, Stocks JM, Stoller JK, Strange C, Turino GM, Campbell EJ, Silverman EK. Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax. 2007;62:806–813.
    1. Crapo RO MA, Gardener RM. Reference spirometric values using techniques and equipment that meet ats recommendations. Am Rev Respir Di. 1982;123:659–664.
    1. Definition and classification of chronic bronchitis for clinical and epidemiological purposes. Lancet. 1965;285:775–779.
    1. Dowson LJ, Guest PJ, Hill SL, Holder RL, Stockley RA. High-resolution computed tomography scanning in alpha1-antitrypsin deficiency: Relationship to lung function and health status. Eur Respir J. 2001;17:1097–1104.
    1. Soejima K, Yamaguchi K, Kohda E, Takeshita K, Ito Y, Mastubara H, Oguma T, Inoue T, Okubo Y, Amakawa K, Tateno H, Shiomi T. Longitudinal follow-up study of smoking-induced lung density changes by high-resolution computed tomography. Am J Respir Crit Care Med. 2000;161:1264–1273.
    1. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet. 2005;37:1217–1223.
    1. O'Connell JR, Weeks DE. Pedcheck: A program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet. 1998;63:259–266.
    1. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. Am J Hum Genet. 2004;74:367–369.
    1. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16:36–49.
    1. Arredondo J, Chernyavsky AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: Regulation of gene expression through alpha3beta2 nicotinic receptor in oral epithelial cells. Am J Pathol. 2005;166:597–613.
    1. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003;111:81–90.
    1. Pantopoulos K. Iron metabolism and the ire/irp regulatory system: An update. Ann NY Acad Sci. 2004;1012:1–13.
    1. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R, Grinberg A, Love P, Tresser N, Rouault TA. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27:209–214.
    1. Chappell SL, Daly L, Lotya J, Alsaegh A, Guetta-Baranes T, Roca J, Rabinovich R, Morgan K, Millar AB, Donnelly SC, Keatings V, MacNee W, Stolk J, Hiemstra PS, Miniati M, Monti S, O'Connor CM, Kalsheker N. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet. 2011;12:24.
    1. Piitulainen E, Tornling G, Eriksson S. Effect of age and occupational exposure to airway irritants on lung function in non-smoking individuals with alpha 1-antitrypsin deficiency (PiZZ) Thorax. 1997;52:244–248.

Source: PubMed

3
Abonnere