Feeding difficulty is the dominant feature in 12 Chinese newborns with CHD7 pathogenic variants

Xiang Chen, Kai Yan, Yanyan Gao, Huijun Wang, Guoqiang Chen, Bingbing Wu, Qian Qin, Lin Yang, Wenhao Zhou, Xiang Chen, Kai Yan, Yanyan Gao, Huijun Wang, Guoqiang Chen, Bingbing Wu, Qian Qin, Lin Yang, Wenhao Zhou

Abstract

Background: CHARGE syndrome is characterized by coloboma, heart defects, choanal atresia, growth retardation, genitourinary malformation and ear abnormalities. The chromodomain helicase DNA-binding protein 7 (CHD7) gene is the major cause of CHARGE syndrome and is inherited in an autosomal dominant manner. Currently, the phenotype spectrum of CHARGE syndrome in neonatal population remain elusive. We aimed to investigate the phenotype spectrum of neonatal patients suspected to have CHARGE syndrome with pathogenic or likely pathogenic variants in the CHD7 gene.

Methods: We pooled next-generation sequencing data from the Neonatal Birth Defects Cohort (NBDC, ClinicalTrials.gov Identifier: NCT02551081) in Children's Hospital of Fudan University. The pathogenicity of novel variants was analyzed by bioinformatic and genetic analyses. Clinical information collection, Sanger sequencing and follow-up interviews were performed when possible. Cranial MRI of these patients was performed, the volumes of different regions of the brain were analyzed.

Results: A total of 12 unrelated patients in our cohort were found with CHD7 variants. Eight patients received a firm clinical diagnosis of CHARGE syndrome (Bergmann criteria, Blake criteria, Verloes criteria and Hale criteria). Three patients did not match any diagnostic criteria, and no patients matched the Verloes criteria. Phenotype spectrum analysis found that feeding difficulty was the dominant feature among this neonatal cohort. Six novel variants in the CHD7 gene (Glu2408*, Lys651*, c.5607 + 1G > T, Leu373Val, Lys2005Asnfs*37 and Gln1991*) were identified, expanding the variant database of the CHD7 gene. Cranial MRI analysis revealed significant volume loss in cingulate gyrus, occipital lobe, and cerebellum and volume gain in the left medial and inferior temporal gyri anterior white matter parts.

Conclusions: Based on a relatively unbiased neonatal cohort, we concluded that CHARGE syndrome and CHD7 gene variants should be suspected in newborns who have feeding difficulty, and one or more malformations.

Trial registration: Neonatal Birth Defects Cohort (NBDC, ClinicalTrials.gov identifier: NCT02551081 ).

Keywords: CHARGE syndrome; CHD7 gene; Feeding difficulty; Newborn; Variant.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Brain volume change of patients with pathogenic/likely pathogenic variants in CHD7. Red color means volume gain and blue color means volume loss (p < 0.05). (a) Coronal, (b) Sagittal, (c) Axial, R: Right; L: Left; A: Anterior; P: Posterior; I: Inferior; S: Superior

References

    1. Hsu P, Ma A, Wilson M, Williams G, Curotta J, Munns CF, Mehr S. CHARGE syndrome: a review. J Paediatr Child Health. 2014;50:504–511. doi: 10.1111/jpc.12497.
    1. Blake KD, Davenport SL, Hall BD, Hefner MA, Pagon RA, Williams MS, et al. CHARGE association: an update and review for the primary pediatrician. Clin Pediatr (Phila) 1998;37:159–173. doi: 10.1177/000992289803700302.
    1. Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A. 2005;133A:306–308. doi: 10.1002/ajmg.a.30559.
    1. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–957. doi: 10.1038/ng1407.
    1. Hall JA, Georgel PT. CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 2007;85:463–476. doi: 10.1139/O07-063.
    1. Marfella CG, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618:30–40. doi: 10.1016/j.mrfmmm.2006.07.012.
    1. Manning BJ, Yusufzai T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J Biol Chem. 2017;292:11927–11936. doi: 10.1074/jbc.M117.779470.
    1. Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 2009;19:590–601. doi: 10.1101/gr.086983.108.
    1. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463:958–962. doi: 10.1038/nature08733.
    1. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, van Ravenswaaij-Arts CM. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet. 2011;48:334–342. doi: 10.1136/jmg.2010.087106.
    1. Hale CL, Niederriter AN, Green GE, Martin DM. Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. Am J Med Genet A. 2016;170A:344–354. doi: 10.1002/ajmg.a.37435.
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. doi: 10.1038/gim.2015.30.
    1. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods. 2016;264:47–56. doi: 10.1016/j.jneumeth.2016.03.001.
    1. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–1320. doi: 10.1109/TMI.2010.2046908.
    1. Oishi K, Mori S, Donohue PK, Ernst T, Anderson L, Buchthal S, et al. Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage. 2011;56:8–20. doi: 10.1016/j.neuroimage.2011.01.051.
    1. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41. doi: 10.1016/j.media.2007.06.004.
    1. Bergman JE, Blake KD, Bakker MK, du Marchie SG, Free RH, Van Ravenswaaij-Arts CM. Death in CHARGE syndrome after the neonatal period. Clin Genet. 2010;77:232–240. doi: 10.1111/j.1399-0004.2009.01334.x.
    1. Hudson A, Macdonald M, Friedman JN, Blake K. CHARGE syndrome gastrointestinal involvement: from mouth to anus. Clin Genet. 2016.
    1. Dobbelsteyn C, Peacocke SD, Blake K, Crist W, Rashid M. Feeding difficulties in children with CHARGE syndrome: prevalence, risk factors, and prognosis. Dysphagia. 2008;23:127–135. doi: 10.1007/s00455-007-9111-6.
    1. Allen Tracey. CHARGE Syndrome. Advances in Neonatal Care. 2012;12(6):336–342. doi: 10.1097/ANC.0b013e318276c320.
    1. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, et al. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78:303–314. doi: 10.1086/500273.
    1. van Ravenswaaij-Arts C, Martin DM. New insights and advances in CHARGE syndrome: diagnosis, etiologies, treatments, and research discoveries. Am J Med Genet C Semin Med Genet. 2017;175:397–406. doi: 10.1002/ajmg.c.31592.
    1. Corsten-Janssen N, Scambler PJ. Clinical and molecular effects of CHD7 in the heart. Am J Med Genet C Semin Med Genet. 2017;175:487–495. doi: 10.1002/ajmg.c.31590.
    1. Corsten-Janssen N, Kerstjens-Frederikse WS, du Marchie SG, Baardman ME, Bakker MK, Bergman JE, et al. The cardiac phenotype in patients with a CHD7 mutation. Circ Cardiovasc Genet. 2013;6:248–254. doi: 10.1161/CIRCGENETICS.113.000054.
    1. Pasick C, McDonald-McGinn DM, Simbolon C, Low D, Zackai E, Jackson O. Asymmetric crying facies in the 22q11.2 deletion syndrome: implications for future screening. Clin Pediatr (Phila) 2013;52:1144–1148. doi: 10.1177/0009922813506606.
    1. Liang X, He B. Congenital asymmetric crying facies syndrome: a case report. Medicine (Baltimore) 2018;97:e11403. doi: 10.1097/MD.0000000000011403.
    1. Aminde LN, Ebenye VN, Arrey WT, Takah NF, Awungafac G. Oesophageal atresia with tracheo-oesophageal fistula in a preterm neonate in Limbe, Cameroon: case report & brief literature review. BMC Res Notes. 2014;7:692. doi: 10.1186/1756-0500-7-692.
    1. Ramsay M, Birnbaum R. Feeding difficulties in children with esophageal atresia: treatment by a multidisciplinary team. Dis Esophagus. 2013;26:410–412. doi: 10.1111/dote.12062.
    1. Smith N. Oesophageal atresia and tracheo-oesophageal fistula. Early Hum Dev. 2014;90:947–950. doi: 10.1016/j.earlhumdev.2014.09.012.
    1. Lalani SR, Hefner MA, Belmont JW, Davenport S. CHARGE Syndrome. 1993.
    1. Janssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012;33:1149–1160. doi: 10.1002/humu.22086.
    1. Feng W, Khan MA, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, Liu HK. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell. 2013;13:62–72. doi: 10.1016/j.stem.2013.05.002.
    1. He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, et al. Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci. 2016;19:678–689. doi: 10.1038/nn.4258.
    1. Feng W, Kawauchi D, Korkel-Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758. doi: 10.1038/ncomms14758.
    1. de Geus CM, Free RH, Verbist BM, Sival DA, Blake KD, Meiners LC, van Ravenswaaij-Arts C. Guidelines in CHARGE syndrome and the missing link: cranial imaging. Am J Med Genet C Semin Med Genet. 2017;175:450–464. doi: 10.1002/ajmg.c.31593.
    1. Lawal A, Kern M, Sanjeevi A, Antonik S, Mepani R, Rittmann T, et al. Neurocognitive processing of esophageal central sensitization in the insula and cingulate gyrus. Am J Physiol Gastrointest Liver Physiol. 2008;294:G787–G794. doi: 10.1152/ajpgi.00421.2007.
    1. Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28:469–478. doi: 10.1007/s10571-007-9236-z.

Source: PubMed

3
Abonnere