Dysfunctional gut microbiota and relative co-abundance network in infantile eczema

Heping Wang, Yinhu Li, Xin Feng, Yufeng Li, Wenjian Wang, Chuangzhao Qiu, Jianqiang Xu, Zhenyu Yang, Zhichuan Li, Qian Zhou, Kaihu Yao, Hongmei Wang, Yuzheng Li, Dongfang Li, Wenkui Dai, Yuejie Zheng, Heping Wang, Yinhu Li, Xin Feng, Yufeng Li, Wenjian Wang, Chuangzhao Qiu, Jianqiang Xu, Zhenyu Yang, Zhichuan Li, Qian Zhou, Kaihu Yao, Hongmei Wang, Yuzheng Li, Dongfang Li, Wenkui Dai, Yuejie Zheng

Abstract

Background: Infantile eczema is an immunological disease that is characterized by itchy and dry skin. Recent studies have suggested that gut microbiota (GM) plays a role in the development and progression of eczema. To further evaluate this potential link, we collected feces from 19 infants with eczema and 14 infants without eczema and analyzed the molecular discrepancies between the two groups using 16S rDNA analysis.

Results: Bacteroidaceae and Deinococcaceae were significantly enriched in eczema infants, and Bacteroidaceae was potentially involved in autoimmune diseases by promoting the Th17 (T helper cell 17) secretion of IL-17 (interleukin-17). In the infants without eczema, the co-abundance network featured three core nodes: Clostridiaceae, Veillonellaceae, and Lactobacillaceae, all of which were lacking in the infants with eczema. Furthermore, our data suggested that Enterobacteriaceae was the core of the co-abundance network for the diseased subjects.

Conclusions: GM is closely connected to the human immune system, and the dysbiotic GM network plays a role in eczema. This study furthered our understanding of the dynamic GM network and its correlation to the occurrence of eczema.

Keywords: Co-abundance; Gut microbiota; Infantile eczema; Network.

Figures

Fig. 1
Fig. 1
Gut microbial diversity in eczema and non-eczema infants. a Distribution of the Shannon and Simpson indices in infants with and without eczema with OTUs results. b Gut microbial diversity at the species level. The cyan and red represent non-eczema and eczema infants, respectively. The gut microbial diversity was slightly low in eczema infants, but there was no significant difference between eczema and non-eczema infants
Fig. 2
Fig. 2
Detection and distribution of biomarkers in eczema and non-eczema infants. a Biomarkers discovered by LEfSe analysis and their corresponding LDA score are listed. Cyan and red represent non-eczema and eczema infants, respectively. b Relative abundance of biomarkers in eczema and non-eczema infants. The cyan and red represent non-eczema and eczema infants, respectively, and the circles with the larger diameter represent the higher abundance. In b, it appears that Bacteroidaceae was the primary biomarker responsible for the gut microbial difference between eczema and non-eczema infants
Fig. 3
Fig. 3
Gut microbial network in eczema and non-eczema infants younger than 6 months. The correlation analysis among gut bacteria was executed and the relationships whose r value was higher than 0.45 or lower than −0.35 were kept. The green and red edges represent the positive correlation and negative correlation, respectively. The diameter of the spots was proportional to the relative abundance. Most of the GM network in the non-eczema group was absent in the group with eczema, but the negative relationship between Enterobacteriaceae and Clostridiaceae remained. Meanwhile direct negative correlation between Bacteroidaceae and Unclassified Clostridiales was enhanced in the non-eczema group

References

    1. Song N, Shamssain M, Zhang J, Wu J, Fu C, Hao S, et al. Prevalence, severity and risk factors of asthma, rhinitis and eczema in a large group of Chinese schoolchildren. J Asthma. 2014;51(3):232–242. doi: 10.3109/02770903.2013.867973.
    1. Eyerich K, Eyerich S, Biedermann T. The multi-modal immune pathogenesis of Atopic Eczema. Trends Immunol. 2015;36(12):788–801. doi: 10.1016/j.it.2015.10.006.
    1. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012; 129(2):434–40, 40 e1–2.
    1. Yap GC, Loo EX, Aw M, Lu Q, Shek LP, Lee BW. Molecular analysis of infant fecal microbiota in an Asian at-risk cohort-correlates with infant and childhood eczema. BMC Res Notes. 2014;7:166. doi: 10.1186/1756-0500-7-166.
    1. Hong PY, Lee BW, Aw M, Shek LP, Yap GC, Chua KY, et al. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One. 2010;5(4):e9964. doi: 10.1371/journal.pone.0009964.
    1. Thomas CL, Fernandez-Penas P. The microbiome and atopic eczema: more than skin deep. Aust J Dermatol. 2016.
    1. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007;56(5):661–667. doi: 10.1136/gut.2006.100164.
    1. Mah KW, Bjorksten B, Lee BW, van Bever HP, Shek LP, Tan TN, et al. Distinct pattern of commensal gut microbiota in toddlers with eczema. Int Arch Allergy Immunol. 2006;140(2):157–163. doi: 10.1159/000092555.
    1. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi: 10.1038/nm.3914.
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi: 10.1038/nature11450.
    1. Narayan NR, Mendez-Lagares G, Ardeshir A, Lu D, Van Rompay KK, Hartigan-O’Connor DJ. Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes. 2015;6(4):284–289. doi: 10.1080/19490976.2015.1067743.
    1. Schwab C, Berry D, Rauch I, Rennisch I, Ramesmayer J, Hainzl E, et al. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J. 2014;8(5):1101–1114. doi: 10.1038/ismej.2013.223.
    1. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–335. doi: 10.1038/nri3430.
    1. Abrahamsson TR, Jakobsson T, Bottcher MF, Fredrikson M, Jenmalm MC, Bjorksten B, et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(5):1174–1180. doi: 10.1016/j.jaci.2007.01.007.
    1. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–998. doi: 10.1038/nmeth.2604.
    1. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–2200. doi: 10.1093/bioinformatics/btr381.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–5072. doi: 10.1128/AEM.03006-05.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi: 10.1128/AEM.01541-09.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
    1. Yurkovetskiy LA, Pickard JM, Chervonsky AV. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe. 2015;17(5):548–552. doi: 10.1016/j.chom.2015.04.010.
    1. Kausar J, Ohyama Y, Terato H, Ide H, Yamamoto O. 16S rRNA gene sequence of Rubrobacter radiotolerans and its phylogenetic alignment with members of the genus Arthrobacter, gram-positive bacteria, and members of the family Deinococcaceae. Int J Syst Bacteriol. 1997;47(3):684–686. doi: 10.1099/00207713-47-3-684.

Source: PubMed

3
Abonnere