FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication

Naún Lobo-Galo, Manuel Terrazas-López, Alejandro Martínez-Martínez, Ángel Gabriel Díaz-Sánchez, Naún Lobo-Galo, Manuel Terrazas-López, Alejandro Martínez-Martínez, Ángel Gabriel Díaz-Sánchez

Abstract

Emergent novel SARS-CoV-2 is responsible for the current pandemic outbreak of severe acute respiratory syndrome with high mortality among the symptomatic population worldwide. Given the absence of a current vaccine or specific antiviral treatment, it is urgent to search for FDA-approved drugs that can potentially inhibit essential viral enzymes. The inhibition of 3CLpro has potential medical application, due to the fact that it is required for processing of the first translated replicase polyproteins into a series of native proteins, which are essential for viral replication in the host cell. We employed an in silico approach to test if disulfiram, as well as its metabolites, and captopril could be used as potential antiviral drugs against COVID-19. We provide data on the potential covalent interaction of disulfiram and its metabolites with the substrate binding subsite of 3CLpro and propose a possible mechanism for the irreversible protease inactivation thought the reaction of the aforementioned compounds with the Cys145. Although, captopril is shown to be a potential ligand of 3CLpro, it is not recommended anti-COVID-19 therapy, due to the fact that it can induce the expression of the viral cellular receptor such as, angiotensin-converting enzyme ACE-2, and thus, making the patient potentially more susceptible to infection. On the other hand, disulfiram, an alcoholism-averting drug, has been previously proposed as an antimicrobial and anti-SARS and MERS agent, safe to use even at higher doses with low side effects, it is recommended to be tested for control of SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.

Keywords: 3CL main protease; COVID-19; SARS-CoV-2; disulfiram; thiol-reacting drugs.

Figures

Figure 1.
Figure 1.
Structure of the drugs used as ligands for the SARS-CoV-2 main protease 3CLpro. Arrow indicates the thiol-reactive group. Disulfiram (DSF); N,N-diethyldithiocarbamate (DDC); S-methyl N,N-diethyldithiocarbamoyl sulfide (MeDDTC); S-methyl-N,N-diethyldithiocarbamoyl sulfoxide (MeDDTC-SO); S-methyl-N,N-diethyldithiocarbamoyl sulfone (MeDDTC-SO2); S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDDC-SO) and S-methyl-N,N-diethylthiocarbamoyl sulfone (MeDDC-SO2).
Figure 2.
Figure 2.
Binding models of DSF and captopril into SARS-CoV-2 main protease 3CLpro. (A) Depiction of the overall structure showing the Cys145 and His41 catalytic residues located in the active site cavity. (B) SARS-CoV-2 3CLpro-DSF and (C) SARS-CoV-2 3CLpro-captopril model complexes.
Figure 3.
Figure 3.
LigPlot analysis of the binding of ligands in SARS-CoV-2 main protease 3CLpro. (A) DSF; (B) captopril; (C) diethyldithiocarbamate (DDC); (D) S-methyl N,N-diethyldithiocarbamoyl sulfide (MeDDTC); (E) S-methyl-N,N-diethyldithiocarbamoyl sulfoxide (MeDDTC-SO); (F) S-methyl-N,N-diethyldithiocarbamoyl sulfone (MeDDTC-SO2); (G) S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDTC-SO) and (H) S-methyl-N,N-diethylthiocarbamoyl sulfone (MeDTC-SO2).
Figure 4.
Figure 4.
Binding models of disulfiram metabolites into SARS-CoV-2 main protease 3CLpro. (A) DDC; (B) MeDDTC; (C) MeDDTC-SO; (D) MeDDTC-SO2; (E) MeDTC-SO and (F) MeDTC-SO2.
Figure 5.
Figure 5.
Possible mechanism of reaction of compounds upon binding to SARS-CoV-2 main protease 3CLpro.

References

    1. Aanouz I., Belhassan A., & El Khatabi K. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2020.1758790
    1. Boopathi S., Poma A., & Kolandaivel P. (2020). Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2020.1758788
    1. Chen Y., Yiu C.-P., & Wong K.-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. doi: 10.12688/f1000research.22457.2
    1. Clayton G. D., & Clayton F. E. (1981). Patty’s industrial hygiene and toxicology (3rd ed.). John Wiley & Sons.
    1. Colson P., Rolain J.-M., Lagier J.-C., Brouqui P., & Raoult D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932. doi: 10.1016/j.ijantimicag.2020.105932
    1. Dalecki A. G., Haeili M., Shah S., Speer A., Niederweis M., Kutsch O., & Wolschendorf F. (2015). Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner . Antimicrobial Agents and Chemotherapy, 59(8), 4835–4844. doi: 10.1128/AAC.00692-15
    1. Díaz-Sánchez Á., Alvarez-Parrilla E., Martínez-Martínez A., Aguirre-Reyes L., Orozpe-Olvera J., Ramos-Soto M., Núñez-Gastélum J., Alvarado-Tenorio B., & de la Rosa L. (2016). Inhibition of urease by disulfiram, an FDA-approved thiol reagent used in humans. Molecules, 21(12), 1628. doi: 10.3390/molecules21121628
    1. Dong E., Du H., & Gardner L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. 10.1016/S1473-3099(20)30120-1
    1. Elfiky A. A., & Azzam E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 20, 1–12. doi: 10.1080/07391102.2020.1758789
    1. Ellenhorn M. J., & Barceloux D. G. (1987). Medical toxicology - diagnosis and treatment of human poisoning (p. 1512). Elsevier Science Publishing
    1. Elmezayen A. D., Al-Obaidi A., & Şahin A. T. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 20, 1–12. doi: 10.1080/07391102.2020.1758791
    1. Enayatkhani M., Hasaniazad M., & Faezi S. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 15, 1–19. doi: 10.1080/07391102.2020.1756411
    1. Galkin A., Kulakova L., Lim K., Chen C. Z., Zheng W., Turko I. V., & Herzberg O. (2014). Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. The Journal of Biological Chemistry, 289(15), 10502–10509. 11;doi: 10.1074/jbc.M114.553123
    1. Gillner D., Armoush N., Holz R. C., & Becker D. P. (2009). Inhibitors of bacterial N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity. Bioorganic & Medicinal Chemistry Letters, 19(22), 6350–6352. 15doi: 10.1016/j.bmcl.2009.09.077
    1. Gupta M. K., Vemula S., & Donde R. (2020). In-silico to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 15, 1–11. doi: 10.1080/07391102.2020.1751300
    1. Hasan A., Paray B. A., & Hussain A. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 22, 1–9. doi: 10.1080/07391102.2020.1754293
    1. Hegyi A., & ZIebuhr J. (2002). Conservation of substrate specificities among coronavirus main proteases. The Journal of General Virology, 83(Pt 3), 595–599. doi: 10.1099/0022-1317-83-3-595
    1. Khan R. J., Jha R. K., & Amera G. M. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 20, 1–14. doi: 10.1080/07391102.2020.1753577
    1. Khan S. A., Zia K., & Ashraf S. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 13, 1–10. doi: 10.1080/07391102.2020.1751298
    1. Laskowski R. A., & Swindells M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi: 10.1021/ci200227u
    1. Lee Y.-M., Duh Y., Wang S.-T., Lai M. M. C., Yuan H. S., & Lim C. (2016). Using an old drug to target a new drug site: Application of disulfiram to target the Zn-Site in HCV NS5A protein. Journal of the American Chemical Society, 138(11), 3856–3862. doi: 10.1021/jacs.6b00299
    1. Lin M.-H., Moses D. C., Hsieh C.-H., Cheng S.-C., Chen Y.-H., Sun C.-Y., & Chou C.-Y. (2018). Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research, 150, 155–163. doi: 10.1016/j.antiviral.2017.12.015
    1. Lipsky J. J., Shen M. L., & Naylor S. (2001). In vivo inhibition of aldehyde dehydrogenase by disulfiram. Chemico-Biological Interactions, 130-132(1–3), 93–102. doi: 10.1016/S0009-2797(00)00225-8
    1. Liu J., Cao R., Xu M., Wang X., Zhang H., Hu H., Li Y., Hu Z., Zhong W., & Wang M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6, 16. doi: 10.1038/s41421-020-0156-0
    1. Macomber L., Minkara M. S., Hausinger R. P., & Merz K. M. (2015). Reduction of urease activity by interaction with the flap covering the active site. Journal of Chemical Information and Modeling, 55(2), 354–361. 23;doi: 10.1021/ci500562t
    1. Mahase E. (2020). Coronavirus covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ (Clinical Research ed.).), 368, m641. doi: 10.1136/bmj.m641
    1. McCance-Katz E. F., Gruber V. A., Beatty G., Lum P., Ma Q., DiFrancesco R., Hochreiter J., Wallace P. K., Faiman M. D., & Morse G. D. (2014). Interaction of disulfiram with antiretroviral medications: Efavirenz increases while atazanavir decreases disulfiram effect on enzymes of alcohol metabolism. The American Journal on Addictions, 23(2), 137–144. doi: 10.1111/j.1521-0391.2013.12081.x
    1. Messerli F. H., Siontis G. C., & Rexhaj E. (2020). COVID-19 and renin angiotensin blockers: Current evidence and recommendations. Circulation, 13. doi: 10.1161/CIRCULATIONAHA.120.047022
    1. Mousavi M., Razavianzadeh N., Armin M., & Fadaei Dashti M. (2018). Sublingual versus oral captopril for decreasing blood pressure in hypertension urgency: A randomized clinical trial. Iranian Red Crescent Medical Journal, 20(6), e61606. doi: 10.5812/ircmj.61606
    1. Muralidharan N., Sakthivel R., & Velmurugan D. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 16, 1–6. doi: 10.1080/07391102.2020.1752802
    1. Pant S., Singh M., & Ravichandiran V. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 20, 1–15. doi: 10.1080/07391102.2020.1757510
    1. Starus A., Nocek B., Bennett B., Larrabee J. A., Shaw D. L., Sae-Lee W., Russo M. T., Gillner D. M., Makowska-Grzyska M., Joachimiak A., & Holz R. C. (2015). Inhibition of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis by L-Captopril. Biochemistry, 54(31), 4834–4844. 11;doi: 10.1021/acs.biochem.5b00475
    1. Ton A. T., Gentile F., & Hsing M. (2020). Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Molecular Informatic, 39, 200002. doi: 10.1002/minf.202000028
    1. Velasco-García R., Zaldívar-Machorro V. J., Mújica-Jiménez C., González-Segura L., & Muñoz-Clares R. A. (2006). Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase-a potential target for antimicrobial agents against Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, Biochem. Biophys. Res. Commun., 341(2), 408–415. 10.1016/j.bbrc.2006.01.003 16426571
    1. Velasco-García R., Chacón-Aguilar V. M., Hervert-Hernández D., & Muñoz-Clares R. A. (2003). Inactivation of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa and Amaranthus hypochondriacus L. leaves by disulfiram. Chemico-Biological Interactions, 143–144, 149–158. 1; doi: 10.1016/S0009-2797(02)00199-0
    1. Wadman M., Couzin-Frankel J., & Kaiser J. (2020). How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science, 17. doi: 10.1126/science.abc3208
    1. Walls A. C., Park Y.-J., Tortorici M. A., Wall A., McGuire A. T., & Veesler D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281–292.e6. doi: 10.1016/j.cell.2020.02.058
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., & Xiao G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. doi: 10.1038/s41422-020-0282-0
    1. Woo P. C. Y., Huang Y., Lau S. K. P., Tsoi H-w., & Yuen K-y. (2005). In silico analysis of ORF1ab in coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 3C-like protease. Microbiology and Immunology, 49(10), 899–908. doi: 10.1111/j.1348-0421.2005.tb03681.x
    1. Yoshimura A., Kimura M., Nakayama H., Matsui T., Okudaira F., Akazawa S., Ohkawara M., Cho T., Kono Y., Hashimoto K., Kumagai M., Sahashi Y., Roh S., & Higuchi S. (2014). Efficacy of disulfiram for the treatment of alcohol dependence assessed with a multicenter randomized controlled trial. Alcoholism, Clinical and Experimental Research, 38(2), 572–578. doi: 10.1111/acer.12278
    1. Yuen K.-S., Ye Z.-W., Fung S.-Y., Chan C.-P., & Jin D.-Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. Cell & Bioscience, 10, 40. doi: 10.1186/s13578-020-00404-4
    1. Zaldívar-Machorro V. J., López-Ortiz M., Demare P., Regla I., & Muñoz-Clares R. A. (2011). The disulfiram metabolites S-methyl-N,N-diethyldithiocarbamoyl sulfoxide and S-methyl-N,N-diethylthiocarbamoyl sulfone irreversibly inactivate betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, both in vitro and in situ, and arrest bacterial growth. Biochimie, 93(2), 286–295. doi: 10.1016/j.biochi.2010.09.022
    1. Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., & Hilgenfeld R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.).), 368(6489), 409–412. 24doi: 10.1126/science.abb3405
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., … Shi Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. doi: 10.1038/s41586-020-2012-7
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G. F., & Tan W. (2020). A novel coronavirus from patients with pneumonia in China, 2019 . The New England Journal of Medicine, 382(8), 727–733. doi: 10.1056/NEJMoa2001017

Source: PubMed

3
Abonnere