A Review on Bone Mineral Density Loss in Total Knee Replacements Leading to Increased Fracture Risk

M Gundry, S Hopkins, K Knapp, M Gundry, S Hopkins, K Knapp

Abstract

The link between low bone mineral density (BMD) scores leading to greater fracture risk is well established in the literature; what is not fully understood is the impact of total knee replacements/revisions or arthroplasties on BMD levels. This literature review attempts to answer this question. Several different databases using specific key terms were searched, with additional papers retrieved via bibliographic review. Based on the available evidence, total knee replacements/revisions and arthroplasties lower BMD and thus increase fracture risk. This review also addresses the possible implications of this research and possible options to reduce this risk.

Keywords: BMD; Bone mineral density; Fracture risk; TKR; Total knee replacement.

Conflict of interest statement

Disclosures

Author Michael Gundry’s current PhD is in part funded by the Stryker Institute with research investigating changes in BMD in bone surrounding cone implants on TKR revision patients. There is no grant number, but it is stated as an industry-funded, non-commercial study subject to a Masters Service Agreement between Stryker UK and the Royal Devon and Exeter Hospital. Additionally, authors Knapp and Hopkins have no conflict of interest to declare.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

    1. Lohmander SL. Knee replacement for osteoarthritis; facts, hopes, and fears. Medicographia. 2013;35(2):181–188.
    1. Koskinen EA, et al. Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50, 493 knee replacements from the Finnish Arthroplasty Register. Acta Orthop. 2008;79(4):499–507.
    1. Knutson K, Lewold S, et al. The Swedish knee arthroplasty register. A nation-wide study of 30,003 knees 1976–1992. Acta Orthop Scand. 1994;65(4):375–386.
    1. Hawker G, Wright J, et al. Health-related quality of life after knee replacement. J Bone Joint Surg Am. 1998;80(2):163–173.
    1. National Institute for Health and Care Excellence. Osteoarthritis: care and management in adults clinical guideline [CG177]. 2014. . Accessed 24 March 2017.
    1. Foss MVL, Byers PD. Bone density, osteoarthritis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis. 1972;31:259–264.
    1. Arokoski JPA, Arokoski MH, et al. Estimation of femoral head bone density using magnetic resonance imaging: comparison between men with and without hip osteoarthritis. J Clin Densitom. 2004;7(2):183–191.
    1. Chaganti RK, Parimi N, et al. Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) Study Group. Osteoporos Int. 2010;21(8):1307–1316.
    1. Dequeker J, Aerssens J, et al. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res. 2003;15(5):426–439.
    1. Hart CC, et al. The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford study. Arthritis Rheum. 2002;46(1):92–99.
    1. Lethbridge-Cejku M, Tobin JD, et al. Axial and hip bone mineral density and radiographic changes of osteoarthritis of the knee: data from the Baltimore Longitudinal Study of Aging. J Rheumatol. 1996;23(11):1943–1947.
    1. Nevitt MC, Lane NE, et al. Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum. 1995;38(7):907–916.
    1. Hochberg MC, Lethbridge-Cejku M, et al. Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging. Osteoarthr Cartil. 2004;12:45–48.
    1. El Miedany YM, Mehanna AN, et al. Altered bone mineral metabolism in patients with osteoarthritis. Joint Bone Spine. 2000;67(6):521–527.
    1. Perry ME, et al. Relationships between self-reported osteoarthritis (OA), bone mineral density (BMD) and radiographic scores using dual energy X-ray absorptiometry (DXA) Scott Med J. 2015;60(3):25–33.
    1. Hannan MT, Andersin JJ, et al. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum. 1993;36(12):1671–1680.
    1. Demirağ MD, Özkan S, et al. Associations between obesity and the radiographic phenotype in knee osteoarthritis. Turk J Med Sci. 2017;47(2):424–429.
    1. Crowninshield RD, Rosenberg AG, et al. Changing demographics of patients with total joint replacement. Clin Orthop Relat Res. 2006;443:266–272.
    1. Arden NK, Griffiths GO, et al. The association between osteoarthritis and osteoporotic fracture: the Chingford Study. Br J Rheumatol. 1996;35:1299–1304.
    1. Arden NK, Crozier S, et al. Knee pain, knee osteoarthritis, and the risk of fracture. Arthritis Rheum. 2006;55(4):610–615.
    1. Bergink AP, Van Der Klift M, et al. Osteoarthritis of the knee is associated with vertebral and nonvertebral fractures in the elderly: the Rotterdam Study. Arthritis Care Res. 2003;49:648–657.
    1. Chan MY, Center JR, et al. Bone mineral density and association of osteoarthritis with fracture risk. Osteoarthr Cartil. 2014;22(9):1251–1258.
    1. Jones G, Nguyen T, et al. Osteoarthritis, bone density, postural stability, and osteoporotic fractures: a population based study. J Rheumatol. 1995;22(5):921–925.
    1. Lee S, Kim TN, et al. Knee osteoarthritis is associated with increased prevalence of vertebral fractures despite high systemic bone mineral density: a cross-sectional study in an Asian population. Mod Rheumatol. 2014;24(1):174–181.
    1. Birch C, Hunter D, et al. Development of a novel imaging process to determine the clinical applicability of bone mineral density assessment of the osteoarthritic knee: a research proposal. Work Pap Health Sci. 2014;1(9):1–7.
    1. Liu G, Peacock M, et al. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7(6):564–569.
    1. Ding M, Odgaard A, et al. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br Vol. 2003;85(6):906–912.
    1. Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Investig. 1998;101(8):1596–1603.
    1. Legrand E, Chappard D, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–19.
    1. Manninen P, Riihimäki H, et al. Overweigh gender and knee osteoarthritis. Int J Obes. 1996;20(6):595–597.
    1. Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: the national health and nutrition examination survey 2005–2006. Arch Osteoporos. 2015;10:14.
    1. Papakitsou EF, Margioris AN, et al. Body mass index (BMI) and parameters of bone formation and resorption in postmenopausal women. Maturitas. 2004;47(3):185–193.
    1. Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528–535.
    1. Saito M, Kida Y, et al. Diabetes, collagen and bone quality. Curr Osteoporos Rep. 2014;12(2):181–188.
    1. McNerny EMB, Nikolas TL. Bone quality in chronic kidney disease: definitions and diagnostics. Curr Osteoporos Rep. 2017;15(3):207–213.
    1. Vestergaard P, Rejnmark L, et al. Osteoarthritis and risk of fractures. Calcif Tissue Int. 2009;84(4):249–256.
    1. Cumming RG, Klineberg RJ. Epidemiological study of the relation between arthritis of the hip and hip fractures. Ann Rheum Dis. 1993;52:707–710.
    1. Arden NK, Nevitt MC, et al. Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Arthritis Rheum. 1999;42(7):1378–1385.
    1. Jones G, Nquyen T, et al. A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol. 1995;22(5):932–936.
    1. Vennu V, Bindawas SM. Relationship between falls, knee osteoarthritis, and health-related quality of life: data from the Osteoarthritis Initiative study. J Clin Interv Aging. 2014;9:793–800.
    1. Doré AL, Golightly YM, et al. Lower-extremity osteoarthritis and the risk of falls in a community-based longitudinal study of adults with and without osteoarthritis. Arthritis Care Res. 2015;67(5):633–639.
    1. Lalmohamed A, Opdam F, et al. Knee arthroplasty and risk of hip fracture: a population-based, case–control study. Calcif Tissue Int. 2012;90(2):144–150.
    1. Prieto-Alhambra D, Javaid MK, et al. Changes in hip fracture rate before and after total knee replacement due to osteoarthritis: a population-based cohort study. Ann Rheum Dis. 2011;70(1):134–138.
    1. Bousson V, Bergot C, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–1501.
    1. Hopkins SJ, Toms AD, et al. A study investigating short- and medium-term effects on function, bone mineral density and lean tissue mass post-total knee replacement in a Caucasian female post-menopausal population: implications for hip fracture risk. Osteoporos Int. 2016;27(8):2567–2576.
    1. Hopkins SJ, Smith CW, et al. Relationship between spine bone mineral density and trabecular bone score in postmenopausal populations following total knee replacement or leg fracture. Osteoporos Int. 2012;23:S582.
    1. Legrand E, Chappard D, et al. Bone mineral density and vertebral fractures in men. Osteoporos Int. 1999;10:265–270.
    1. Marshall D, Johnell O, et al. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312(7041):1254–1259.
    1. De Laet CE, Van Hout BA, et al. Bone density and risk of hip fracture in men and women: cross sectional analysis. Br Med J. 1997;315(7102):221–225.
    1. Cummings SR, Black DM, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341(8837):72–75.
    1. Cummings SR, Nevitt MC, et al. Risk factor for hip fracture in white women. N Engl J Med. 1995;332(12):767–774.
    1. Melton LJ, 3rd, Wahner HW, et al. Osteoporosis and the risk of hip fracture. Am J Epidemiol. 1986;124(2):254–261.
    1. Beaupre LA, Rezansoff A, et al. Bone mineral density changes in the hip and spine of men and women 1-year after primary cemented total knee arthroplasty: prospective cohort study. J Arthroplast. 2015;30(15):2185–2189.
    1. Gazdzik TS, Gajda T, et al. Bone mineral density changes after total knee arthroplasty: one-year follow-up. J Clin Densitom. 2008;11(3):345–350.
    1. Ishii Y, Yagisawa K, et al. Changes in bone mineral density of the proximal femur after total knee arthroplasty. J Arthroplast. 2000;15(4):519–522.
    1. Kim KK, Won YY, et al. Changes in bone mineral density of both proximal femurs after total knee arthroplasty. Clin Orthop Surg. 2014;6(1):43–48.
    1. Li MG, Nilsson KG. Changes in bone mineral density at the proximal tibia after total knee arthroplasty: a 2-year follow-up of 28 knees using dual energy X-ray absorptiometry. J Orthop Res. 2000;18(1):40–47.
    1. Liu TK, Yang RS, et al. Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop. 1995;19(6):346–351.
    1. Petersen MM, Nielsen PT, et al. Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A 3-year follow-up of 25 knees. Acta Orthop Scand. 1995;66(6):513–516.
    1. Soininvaara TA, Miettinen HJ, et al. Bone mineral density in the proximal femur and contralateral knee after total knee arthroplasty. J Clin Densitom. 2004;7(4):424–431.
    1. Soininvaara TA, Miettinen HJ, et al. Periprosthetic tibial bone mineral density changes after total knee arthroplasty: one-year follow-up study of 69 patients. Acta Orthop Scand. 2004;75(5):600–605.
    1. Mau-Moeller A, Behrens M, et al. Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. Biomed Res Int. 2015;2015:418168.
    1. Järvenpää J, Soininvaara TA, et al. Changes in bone mineral density of the distal femur after total knee arthroplasty: a 7-year DEXA follow-up comparing results between obese and nonobese patients. Knee J. 2014;21(1):232–235.
    1. Mintzer CM, Robertson DD, et al. Bone loss in the distal anterior femur after total knee arthroplasty. Clin Orthop Relat Res. 1990;260:135–143.
    1. Jaroma A, Soininvaara TA, et al. Periprosthetic tibial bone mineral density changes after total knee arthroplasty a 7-year follow-up of 86 patients. Acta Orthop. 2016;87(3):268–273.
    1. Lavernia CJ, Rodriguez JA, et al. Bone mineral density of the femur in autopsy retrieved total knee arthroplasties. J Arthroplast. 2014;29(8):1681–1686.
    1. Lonner JH, Klotz M, et al. Changes in bone density after cemented total knee arthroplasty: influence of stem design. J Arthroplast. 2001;16(1):107–111.
    1. Im GI, Kwon OJ, et al. The relationship between osteoarthritis of the knee and bone mineral density of proximal femur: a cross-sectional study from a Korean population in women. Clin Orthop Surg. 2014;6(4):420–425.
    1. Karbowski A, Schwitalle M, et al. Periprosthetic bone remodelling after total knee arthroplasty: early assessment by dual energy X-ray absorptiometry. Arch Orthop Trauma Surg. 1999;119(5–6):324–326.
    1. Levitz CL, Lotke PA, et al. Long-term changes in bone mineral density following total knee replacement. Clin Orthop Relat Res. 1995;321:68–72.
    1. Van Loon CJ, Oyen WJ, et al. Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg. 2001;121(5):282–285.
    1. Hahn MH, Won YY. Bone mineral density changes after total knee replacement in women over the age of 65. J Bone Metab. 2013;20(2):105–109.
    1. Petersen MM, Gehrchen PM, et al. Effect of hydroxyapatite-coated tibial components on changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: a prospective randomized study using dual-energy x-ray absorptiometry. J Arthroplast. 2005;20(4):516–520.
    1. Mann T, Eisler T, et al. Larger femoral periprosthetic bone mineral density decrease following total hip arthroplasty for femoral neck fracture than for osteoarthritis: a prospective, observational cohort study. J Orthop Res. 2015;33(4):504–512.
    1. Cameron HU, Cameron G. Stress-relief osteoporosis of the anterior femoral condyles in total knee replacement: a study of 185 patients. Orthop Rev. 1987;16(7):449–456.
    1. Van Lenthe GH, de Waal Malefijt MC, et al. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br Vol. 1997;79(1):117–122.
    1. Hopkins SJ, Smith CW, et al. A study investigating the long-term effects on function, bone mineral density and lean tissue mass post total knee replacement in a female postmenopausal population. Osteoporos Int. 2012;23:S552.
    1. Meek RM, Norwood T, et al. The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement. Bone Joint J. 2011;93(1):96–101.
    1. Toogood PA, Vail TP. Periprosthetic fractures: a common problem with a disproportionately high impact on healthcare resources. J Arthroplast. 2015;30(10):1688–1691.
    1. Vala CH, Kärrholm J, et al. OC12 Risk for hip fracture ten years before and after total knee replacement surgery in the entire Swedish population. Abstract book: WCO-IOF-ESCEO World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, 14–17 April 2016, Malaga, Spain Osteoporosis International, 27(Supplement 1) 2016. . Accessed 23 March 2017.
    1. Cordeiro EN, Costa RC, et al. Periprosthetic fractures in patients with total knee arthroplasties. Clin Orthop Relat Res. 1990;252:182–189.
    1. Dennis DA. Periprosthetic fractures following total knee arthroplasty. J Bone Joint Surg (Am Vol) 2001;83(1):120–130.
    1. Merkel KD, Johnson EW., Jr Supracondylar fracture of the femur after total knee arthroplasty. J Bone Joint Surg (Am Vol) 1986;68(1):29–43.
    1. Engh GA, Ammeen DJ, et al. Instructional course lectures, the american academy of orthopaedic surgeons—periprosthetic fractures adjacent to total knee implants. Treatment and clinical results. J Bone Joint Surg (Am Vol) 1997;79:1100–1113.
    1. Beals RK, Tower SS. Periprosthetic fractures of the femur. An analysis of 93 fractures. Clin Orthop Relat Res. 1996;327:238–246.
    1. Matsumoto H, Okuno M, et al. Incidence and risk factors for falling in patients after total knee arthroplasty compared to healthy elderly individuals. Yonago Acta Medica. 2014;57(4):137–145.
    1. Soison A, Riratanapong S, et al. Prevalence of fall in patients with total knee arthroplasty living in the community. J Med Assoc Thail. 2014;97(12):1338–1343.
    1. Ikutomo H, Nagai K, et al. Falls in patients after total hip arthroplasty in Japan. J Orthop Sci. 2015;20(4):663–668.
    1. Swinkels A, Allain TJ. Physical performance tests, self-reported outcomes, and accidental falls before and after total knee arthroplasty: an exploratory study. Physiother Theory Pract. 2013;29(6):432–442.
    1. Swinkels A, Newman JH, et al. A prospective observational study of falling before and after knee replacement surgery. Age Ageing. 2009;38(2):175–181.
    1. Carulli C, Civinini R, et al. The use of anti-osteoporosis drugs in total knee arthroplasty. Aging Clin Exp Res. 2011;23(2):38–39.
    1. Prieto-Alhambra D, Javaid MK, et al. Bisphosphonate use and risk of post-operative fracture among patients undergoing a total knee replacement for knee osteoarthritis: a propensity score analysis. Osteoporos Int. 2011;22(5):1555–1571.
    1. Teng S, Yi C, et al. Bisphosphonate use and risk of implant revision after total hip/knee arthroplasty: a meta-analysis of observational studies. Public Libr Sci. 2015;10(10):e0139927.
    1. Ma S, Goh EL. Long-term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Sci Rep. 2017;7:43399.
    1. Kharwadkar N, Mayne B, et al. Bisphosphonates and atypical subtrochanteric fractures of the femur. Bone Joint Res. 2017;6(3):144–153.
    1. Bjarnason NH, Hassager C, et al. Postmenopausal bone remodelling and hormone replacement. Clim J Int Menopause Soc. 1998;1(1):72–79.
    1. Torgerson DJ, Bell-Syer SE. Hormone replacement therapy and prevention of nonvertebral fractures: a meta-analysis of randomized trials. J Am Med Assoc. 2001;285(22):2891–2897.
    1. Lufkin EG, Wahner HW, et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992;117(1):1–9.
    1. Beral V, Million Women Study Collaborators Breast cancer and hormone-replacement therapy in the million women study. Lancet. 2003;362(9382):419–427.
    1. Jordan N, Barry M, et al. Comparative effects of antiresorptive agents on bone mineral density and bone turnover in postmenopausal women. Clin Interv Aging. 2006;1(4):377–387.
    1. Ettinger B, Black DM, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. J Am Med Assoc. 1999;282(7):637–645.
    1. Romero A, Alonso C, et al. Risk of venous thromboembolic disease in women a qualitative systematic review. Eur J Obstet Gynecol Reprod Biol. 2005;121(1):8–17.
    1. Cosman F, Baz-Hecht M, et al. Short-term effects of estrogen, tamoxifen and raloxifene on hemostasis: a randomized-controlled study and review of the literature. Thromb Res. 2005;116(1):1–13.
    1. Arnett T. Basics of bone biology. Osteoporos Rev. 2015;23(2):12–16.
    1. National Osteoporosis Society. Drug treatments for osteoporosis. 2016. . Accessed 23 March 2017.
    1. Borba VZC, Manas NCP. The use of PTH in the treatment of osteoporosis. Arq Bras Endocrinol Metabol. 2010;54(2):213–219.
    1. Almeida MM, Nani EP, et al. Strontium ranelate increases osteoblast activity. Tissue Cell. 2016;48(3):183–188.
    1. National Osteoporosis Society National osteoporosis update. Osteoporos Rev. 2017;25(1):14.
    1. Abrahamsen B, Grove EL, et al. Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate. Osteoporos Int. 2014;25(2):757–762.
    1. Minoda Y, Ikebuchi M, et al. A cemented mobile-bearing total knee replacement prevents periprosthetic loss of bone mineral density around the femoral component: a matched cohort study. J Bone Joint Surg Br Vol. 2010;92(6):794–798.
    1. Zhang QH, Cossey A, et al. Stress shielding in periprosthetic bone following a total knee replacement: effects of implant material, design and alignment. Med Eng Phys. 2016;38(12):1481–1488.
    1. Howard JL, Kudera LE, et al. Early results of the use of tantalum femoral cones for revision total knee arthroplasty. J Bone Joint Surg Am. 2011;93(5):478–484.
    1. Lachiewicz B, Handerson RA, et al. Can tantalum cones provide fixation in complex revision knee arthroplasty? Clin Orthop Relat Res. 2012;470(1):199–204.
    1. Harrison AK, Gioe TJ, et al. Do porous tantalum implants help preserve bone?: Evaluation of tibial bone density surrounding tantalum tibial implants in TKA. Clin Orthop Relat Res. 2010;468(10):2739–2745.
    1. Winther N, Jensen C, et al. Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A prospective randomized study. Int Orthop. 2016;40(2):285–294.
    1. Minoda Y, Kobayashi A, et al. Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years-a matched cohort study. J Arthroplast. 2013;28(10):1760–1764.
    1. Jensen CL, Petersen MM, et al. Bone mineral density changes of the proximal tibia after revision total knee arthroplasty. A randomised study with the use of porous tantalum metaphyseal cones. Int Orthop. 2012;36(9):1857–1863.
    1. Faizan A, Bhowmik-Stoker M, et al. Development and verification of novel porous titanium metaphyseal cones for revision total knee arthroplasty. J Arthroplast. 2017;32(6):1946–1953.
    1. Family R, Solati-Hashjin M, et al. Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J Intern Med. 2012;3(3):460–465.
    1. Cook SD, Thomas KA, et al. Hydroxyapatite-coated for orthopaedic implant applications. Clin Orthop Relat Res. 1988;232:225–243.
    1. Bøe BG, Støen RØ, et al. Coating of titanium with hydroxyapatite leads to decreased bone formation. Bone Joint Res. 2012;1(6):125–130.
    1. Watters TS, Martin JR, et al. Porous-coated metaphyseal sleeves for severe femoral and tibial bone loss in revision TKA. J Arthroplast. 2017;S0883-5403(17):30536–30533.
    1. Dalury DF, Barrett WP. The use of metaphyseal sleeves in revision total knee arthroplasty. Knee. 2016;23(3):545–548.
    1. Maier GS, Kolbow K, et al. The importance of bone mineral density in hip arthroplasty: results of a survey asking orthopaedic surgeons about their opinions and attitudes concerning osteoporosis and hip arthroplasty. Adv Orthop. 2016;2016:8079354.
    1. Di Gregorio S, Del Rio L, et al. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS) Bone J. 2015;75:138–143.
    1. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929–1936.
    1. Ferket BS, Feldman Z, et al. Impact of total knee replacement practice: cost effectiveness analysis of data from the osteoarthritis initiative. Br Med J. 2017;356:j1131.
    1. Skou ST, Roos EM, et al. A randomized controlled trial of total knee replacement. New J Med. 2015;373:1597–1606.
    1. Robertsson O, Dunbar M, et al. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand. 2000;71(3):262–267.

Source: PubMed

3
Abonnere