A phase 2 study of combined chemo-immunotherapy with cisplatin-pembrolizumab and radiation for unresectable vulvar squamous cell carcinoma

Oladapo Yeku, Andrea L Russo, Hang Lee, David Spriggs, Oladapo Yeku, Andrea L Russo, Hang Lee, David Spriggs

Abstract

Background: Unresectable or metastatic vulvar cancer has relatively poor outcomes despite chemotherapy-sensitized radiation therapy and combination cytotoxic therapy. Despite the virus-associated and immunogenic nature of this disease, novel immunotherapy options that exploit this advantage are currently lacking. Platinum agents such as cisplatin have been shown to prime dendritic cells for T-cell costimulation, promote downregulation of inhibitory checkpoint molecules, and sensitize tumor cells to cytotoxic T-cell killing. Radiation therapy has also been shown to promote immunogenetic cell death as monotherapy and in combination with cisplatin. In combination with pembrolizumab, cisplatin-sensitized radiation is hypothesized to increase overall response rates and recurrence-free survival in patients with vulvar cancer, via induction of an anti-tumor inflammatory response.

Methods: We propose a single-arm phase II clinical trial of pembrolizumab combined with cisplatin-sensitized radiation therapy for women with unresectable, locally advanced, or metastatic vulvar cancer. The first three patients with locally advanced or unresectable disease will receive cycle 1 of pembrolizumab followed by a break and resumption of pembrolizumab at cycle 4 and as part of a safety cohort. All other patients, including the fourth patient with locally advanced/unresectable disease, will receive weekly cisplatin and pembrolizumab every 3 weeks, concurrently with daily radiation therapy. Following the completion of Cis-RT, patients will continue pembrolizumab maintenance for a total of 12 cycles. Archived tissue will be used for HPV status, MSI status, PD-L1, and TIL stratification post hoc. Imaging will be performed at baseline and every 3 cycles (21-day cycles) as per standard-of-care. Laboratory analysis will occur on the first day of each cycle.

Discussion: The combination of cisplatin-sensitized radiation and immune checkpoint blockade has not been evaluated in the upfront setting for vulvar cancer. In this rare malignancy, there are limited interventional clinical trials. This trial is designed to be as accessible as possible by allowing patients to receive cisplatin and radiation locally according to accepted standard-of-care while receiving pembrolizumab and adverse event monitoring at a centralized site. A robust suite of translational correlative studies has also been built into the trial to evaluate tumor-directed immune activation. Trial registration NCT04430699.

Keywords: Chemoimmunotherapy; Chemoradiation; Immunotherapy; Pembrolizumab; Vulvar cancer.

Conflict of interest statement

O.Y has no competing interests.

Figures

Fig. 1
Fig. 1
Treatment schema for the first three patients with unresectable disease as part of the safety cohort
Fig. 2
Fig. 2
Treatment schema

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.
    1. Francis JA, Eiriksson L, Dean E, Sebastianelli A, Bahoric B, Salvador S. No. 370-Management of squamous cell cancer of the vulva. J Obstet Gynaecol Can. 2019;41(1):89–101.
    1. SEER Cancer Statistics Factsheets: Vulvar Cancer. Bethesda, MD: National Cancer Institute. . Accessed 8 Feb 2019.
    1. Cormio G, Loizzi V, Gissi F, et al. Cisplatin and vinorelbine chemotherapy in recurrent vulvar carcinoma. Oncology. 2009;77(5):281–284.
    1. Witteveen PO, van der Velden J, Vergote I, et al. Phase II study on paclitaxel in patients with recurrent, metastatic or locally advanced vulvar cancer not amenable to surgery or radiotherapy: a study of the EORTC-GCG (European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group) Ann Oncol. 2009;20(9):1511–1516.
    1. Horowitz NS, Olawaiye AB, Borger DR, et al. Phase II trial of erlotinib in women with squamous cell carcinoma of the vulva. Gynecol Oncol. 2012;127(1):141–146.
    1. Forner DM, Lampe B. Exenteration in the treatment of Stage III/IV vulvar cancer. Gynecol Oncol. 2012;124(1):87–91.
    1. Miller B, Morris M, Levenback C, Burke TW, Gershenson DM. Pelvic exenteration for primary and recurrent vulvar cancer. Gynecol Oncol. 1995;58(2):202–205.
    1. Thigpen JT, Blessing JA, Homesley HD, Lewis GC., Jr Phase II trials of cisplatin and piperazinedione in advanced or recurrent squamous cell carcinoma of the vulva: a Gynecologic Oncology Group Study. Gynecol Oncol. 1986;23(3):358–363.
    1. Han SC, Kim DH, Higgins SA, Carcangiu ML, Kacinski BM. Chemoradiation as primary or adjuvant treatment for locally advanced carcinoma of the vulva. Int J Radiat Oncol Biol Phys. 2000;47(5):1235–1244.
    1. Moore DH, Ali S, Koh WJ, et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a gynecologic oncology group study. Gynecol Oncol. 2012;124(3):529–533.
    1. van Doorn HC, Ansink A, Verhaar-Langereis M, Stalpers L. Neoadjuvant chemoradiation for advanced primary vulvar cancer. Cochrane Database Syst Rev. 2006
    1. Gill BS, Bernard ME, Lin JF, et al. Impact of adjuvant chemotherapy with radiation for node-positive vulvar cancer: a National Cancer Data Base (NCDB) analysis. Gynecol Oncol. 2015;137(3):365–372.
    1. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–584.
    1. Todd RC, Lippard SJ. Inhibition of transcription by platinum antitumor compounds. Metallomics. 2009;1(4):280–291.
    1. Lesterhuis WJ, Punt CJ, Hato SV, et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest. 2011;121(8):3100–3108.
    1. Ramakrishnan R, Assudani D, Nagaraj S, et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest. 2010;120(4):1111–1124.
    1. Hato SV, de Vries IJ, Lesterhuis WJ. STATing the importance of immune modulation by platinum chemotherapeutics. Oncoimmunology. 2012;1(2):234–236.
    1. Gong J, Le TQ, Massarelli E, Hendifar AE, Tuli R. Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer. 2018;6(1):46.
    1. Martins I, Kepp O, Schlemmer F, et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene. 2011;30(10):1147–1158.
    1. Obeid M, Panaretakis T, Joza N, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14(10):1848–1850.
    1. Verbrugge I, Hagekyriakou J, Sharp LL, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012;72(13):3163–3174.
    1. Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–349.
    1. Sharabi AB, Nirschl CJ, Kochel CM, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 2015;3(4):345–355.
    1. Bauml JM, Mick R, Ciunci C, et al. Pembrolizumab after completion of locally ablative therapy for oligometastatic non-small cell lung cancer: a Phase 2 Trial. JAMA Oncol. 2019;5(9):1283–1290.
    1. Bersanelli M, Lattanzi E, D’Abbiero N, et al. Palliative radiotherapy in advanced cancer patients treated with immune-checkpoint inhibitors: the PRACTICE study. Biomed Rep. 2020;12(2):59–67.
    1. Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–1929.
    1. Remark R, Merghoub T, Grabe N, et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol. 2016;1(1):aaf6925.
    1. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520.
    1. Lee J, Kim SH, Kim G, et al. Treatment outcome in patients with vulvar cancer: comparison of concurrent radiotherapy to postoperative radiotherapy. Radiat Oncol J. 2012;30(1):20–26.
    1. Barker CA, Postow MA, Kronenberg SA, Ma J, Yamada Y, Beal K, et al. Concurrent radiation therapy (RT), ipilimumab (Ipi) and/or nivolumab (nivo) on a phase 1 clinical trial [abstract] Int J Radiat Oncol Biol Phys. 2015
    1. Duffy AG, Kleiner DE, Alewine C, Figg WD, Steinberg SM, et al. A pilot study of immune checkpoint inhibition in combination with radiation therapy in patients with metastatic pancreatic cancer [abstract] J Clin Oncol. 2017
    1. Levy A, Massard C, Soria JC, Deutsch E. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: single centre subset analysis from a phase 1/2 trial. Eur J Cancer. 2016;68:156–162.
    1. Lin SH LY, Price J, Parker M, Gomez DR, Welsh JW, et al. DETERRED: PD-L1 blockade to evaluate the safety of lung cancer therapy using carboplatin, paclitaxel, and radiation combined with MPDL3280A (atezolizumab) [abstract]. J Clin Oncol 2017; 35:Abstr nr 3064.
    1. Tang C, Welsh JW, de Groot P, et al. Ipilimumab with stereotactic ablative radiation therapy: Phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6):1388–1396.
    1. Luke JJ, Lemons JM, Karrison TG, et al. Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol. 2018;36(16):1611–1618.

Source: PubMed

3
Abonnere