Low flow extracorporeal CO2 removal in ARDS patients: a prospective short-term crossover pilot study

Harlinde Peperstraete, Sunny Eloot, Pieter Depuydt, Filip De Somer, Carl Roosens, Eric Hoste, Harlinde Peperstraete, Sunny Eloot, Pieter Depuydt, Filip De Somer, Carl Roosens, Eric Hoste

Abstract

Background: Lung protective mechanical ventilation (MV) is the corner stone of therapy for ARDS. However, its use may be limited by respiratory acidosis. This study explored feasibility of, effectiveness and safety of low flow extracorporeal CO2 removal (ECCO2R).

Methods: This was a prospective pilot study, using the Abylcap® (Bellco) ECCO2R, with crossover off-on-off design (2-h blocks) under stable MV settings, and follow up till end of ECCO2R. Primary endpoint for effectiveness was a 20% reduction of PaCO2 after the first 2-h. Adverse events (AE) were recorded prospectively. We included 10 ARDS patients on MV, with PaO2/FiO2 < 150 mmHg, tidal volume ≤ 8 mL/kg with positive end-expiratory pressure ≥ 5 cmH2O, FiO2 titrated to SaO2 88-95%, plateau pressure ≥ 28 cmH2O, and respiratory acidosis (pH <7.25).

Results: After 2-h of ECCO2R, 6 patients had a ≥ 20% decrease in PaCO2 (60%); PaCO2 decreased 28.4% (from 58.4 to 48.7 mmHg, p = 0.005), and pH increased (1.59%, p = 0.005). ECCO2R was hemodynamically well tolerated. During the whole period of ECCO2R, 6 patients had an AE (60%); bleeding occurred in 5 patients (50%) and circuit thrombosis in 3 patients (30%), these were judged not to be life threatening.

Conclusions: In ARDS patients, low flow ECCO2R significantly reduced PaCO2 after 2 h, Follow up during the entire ECCO2R period revealed a high incidence of bleeding and circuit thrombosis.

Trial registration: https://ichgcp.net/clinical-trials-registry/NCT01911533" title="See in ClinicalTrials.gov">NCT01911533 , registered 23 July 2013.

Keywords: Acute respiratory distress syndrome; Driving pressure; Extracorporeal carbon dioxide removal; Lung protective mechanical ventilation; Plateau pressure.

Conflict of interest statement

Ethics approval and consent to participate

This study was conducted in agreement with the declaration of Helsinki and approved by the Ethics Committee of the Ghent University Hospital (EC 2013/505). Inclusion was only possible after obtaining written informed consent from the patient or the proxy.

Consent for publication

Not applicable.

Competing interests

H. Peperstraete: speaker honoraria for an educational program of Bellco.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Evolution of PaCO2 during the 6-h off-on-off period. a: Evolution of PaCO2 during the first 2-h off period. b: Evolution of PaCO2 during the first 2-h on period. c: Evolution of PaCO2 during the second 2-h off period. d: Evolution of pH during the first 2-h off period. e: Evolution of pH during the first 2-h on period. f: Evolution of pH during the second 2-h off period. This figure was created with Excel (Office)

References

    1. Acute Respiratory Distress Syndrome The Berlin Definition. JAMA. 2012;307:2526–33.
    1. Dowdy DW, Eid MP, Dennison CR, Mendez-Tellez PA, Herridge MS, Guallar E, Pronovost PJ, Needham DM. Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med. 2006;32:1115–1124. doi: 10.1007/s00134-006-0217-3.
    1. The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000, 342:1301–1308.
    1. Tonelli AR, Zein J, Adams J, Ioannidis JPA. Effects of interventions on survival in acute respiratory distress syndrome: an umbrella review of 159 published randomized trials and 29 meta-analyses. Intensive Care Med. 2014;40:769–787. doi: 10.1007/s00134-014-3272-1.
    1. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, Pasqualucci M, De OP DMCT, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–1659. doi: 10.1001/jama.2012.13730.
    1. Bein T, Grasso S, Moerer O, Quintel M, Guérin C, Deja M, Brondani A, Mehta S. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42:699–711. doi: 10.1007/s00134-016-4325-4.
    1. Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–1245. doi: 10.1164/rccm.200501-048CP.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–166. doi: 10.1164/rccm.200607-915OC.
    1. Needham DM, Colantuoni E, Mendez-Tellez PA, Dinglas VD, Sevransky JE, Dennison Himmelfarb CR, Desai SV, Shanholtz C, Brower RG, Pronovost PJ. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ. 2012;344:–e2124.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, J-CM R, CRR C, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A. For the LUNG SAFE investigators and the ESICM trials group: epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–713. doi: 10.1001/jama.2016.0291.
    1. Feihl FF, Perret CC. Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med. 1994;150:1722–1737. doi: 10.1164/ajrccm.150.6.7952641.
    1. Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller M-D, Mélot C, Naeije R. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162:209–215. doi: 10.1164/ajrccm.162.1.9907119.
    1. Marhong J, Fan E. Carbon dioxide in the critically ill: too much or too little of a good thing? Respir Care. 2014;59:1597–1605. doi: 10.4187/respcare.03405.
    1. Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE. Control of breathing using an extracorporeal membrane lung. Anesthesiology. 1977;46:138–141. doi: 10.1097/00000542-197702000-00012.
    1. Gattinoni L, Pesenti A, Mascheroni D, Marcolin R, Fumagalli R, Rossi F, Iapichino G, Romagnoli G, Uziel L, Agostoni A. Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA. 1986;256:881–886. doi: 10.1001/jama.1986.03380070087025.
    1. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–835. doi: 10.1097/ALN.0b013e3181b764d2.
    1. Forster C, Schriewer J, John S, Eckardt K-U, Willam C. Low-flow CO2 removal integrated into renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care. 2013;17:R154. doi: 10.1186/cc12833.
    1. Allardet-Servent J, Castanier M, Signouret T, Soundaravelou R, Lepidi A, Seghboyan J-M. Safety and efficacy of combined extracorporeal CO2 removal and renal replacement therapy in patients with acute respiratory distress syndrome and acute kidney injury. Crit Care Med. 2015;43:2570–2581. doi: 10.1097/CCM.0000000000001296.
    1. Deniau B, Ricard JD, Messika J, Dreyfuss D, Gaudry S. Use of extracorporeal carbon dioxide removal (ECCO2R) in 239 intensive care units: results from a French national survey. Intensive Care Med. 2016;42:624–625. doi: 10.1007/s00134-016-4226-6.
    1. Moss CE, Galtrey EJ, Camporota L, Meadows C, Gillon S, Ioannou N, Barrett NA, Retrospective Observational A. Case series of low-flow Venovenous extracorporeal carbon dioxide removal use in patients with respiratory failure. ASAIO J. 2016;62:458–462. doi: 10.1097/MAT.0000000000000386.
    1. Bein T, Weber-Carstens S, Goldmann A, Müller T, Staudinger T, Brederlau J, Muellenbach R, Dembinski R, Graf BM, Wewalka M, Philipp A, Wernecke K-D, Lubnow M, Slutsky AS. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS. Intensive Care Med. 2013;39:847–856. doi: 10.1007/s00134-012-2787-6.
    1. Fanelli V, Ranieri MV, Mancebo J, Moerer O, Quintel M, Morley S, Moran I, Parrilla F, Costamagna A, Gaudiosi M, Combes A. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit Care. 2016:1–7.
    1. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent J-L, Rubenfeld GD, Thompson BT, Ranieri VM. The berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–1582. doi: 10.1007/s00134-012-2682-1.
    1. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT. National Heart, Lung, and Blood Institute ARDS clinical trials network: higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336. doi: 10.1056/NEJMoa032193.
    1. Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, Kaul S, Wiviott SD, Menon V, Nikolsky E, Serebruany V, Valgimigli M, Vranckx P, Taggart D, Sabik JF, Cutlip DE, Krucoff MW, Ohman EM, Steg PG, White H. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the bleeding academic research consortium. Circulation. 2011;123:2736–2747. doi: 10.1161/CIRCULATIONAHA.110.009449.
    1. Bein T, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid F-X, Butz B, Birnbaum D, Taeger K, Schlitt HJ. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34:1372–1377. doi: 10.1097/.
    1. Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, Uhrig A, Metschke M, Wegscheider K, Suttorp N, Rousseau S. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med. 2012;38:1632–1639. doi: 10.1007/s00134-012-2649-2.
    1. Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM, Bacchetta M, Brodie D. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10:307–314. doi: 10.1513/AnnalsATS.201301-021OC.
    1. Sharma AS, Weerwind PW, Strauch U, van Belle A, Maessen JG, Wouters EFM. Applying a low-flow CO2 removal device in severe acute hypercapnic respiratory failure. Perfusion. 2016;31:149–155. doi: 10.1177/0267659115589401.
    1. Karagiannidis C, Kampe KA, Sipmann FS, Larsson A, Hedenstierna G, Windisch W, Mueller T. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18:R124. doi: 10.1186/cc13928.
    1. Schultz MJ, Juffermans NP, Matthay MA. From protective ventilation to super-protective ventilation for acute respiratory distress syndrome. Intensive Care Med. 2013;39:963–965. doi: 10.1007/s00134-012-2805-8.
    1. Eloot S, Peperstraete H, De Somer F, Hoste E. Assessment of the optimal operating parameters during extracorporeal CO2 removal with the Abylcap® system. Int J Artif Organs. 2017;39:580–5.
    1. Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P, Dell’Amore A, Urbino R, Mascia L, Evangelista A, Antro C, D’Amato R, Sucre MJ, Simonetti U, Persico P, Nava S, Ranieri VM. Extracorporeal Co2 removal in Hypercapnic patients at risk of noninvasive ventilation failure. Crit Care Med. 2015;43:120–127. doi: 10.1097/CCM.0000000000000607.
    1. Bai M, Zhou M, He L, Ma F, Li Y, Yu Y, Wang P, Li L, Jing R, Zhao L, Sun S. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med. 2017;41:2098–2110. doi: 10.1007/s00134-015-4099-0.
    1. De Waele JJ, Van Cauwenberghe S, Hoste E, Benoit D, Colardyn F. The use of the activated clotting time for monitoring heparin therapy in critically ill patients. Intensive Care Med. 2003;29:325–328. doi: 10.1007/s00134-002-1609-7.
    1. Nankervis CA, Preston TJ, Dysart KC, Wilkinson WD, Chicoine LG, Welty SE, Nelin LD. Assessing heparin dosing in neonates on venoarterial extracorporeal membrane oxygenation. ASAIO J. 2007;53:111–114. doi: 10.1097/01.mat.0000247777.65764.b3.
    1. Kalbhenn J, Neuffer N, Zieger B, Schmutz A, Extracorporeal I. CO2 removal really “Safe” and ‘less’ invasive? Observation of blood injury and coagulation impairment during ECCO2R. ASAIO J. 2017;63:666–671. doi: 10.1097/MAT.0000000000000544.
    1. The LUNG SAFE Investigators and the ESICM Trials Group. Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, Brochard L, Clarkson K, Esteban A, Gattinoni L, van Haren F, Heunks LM, Kurahashi K, Laake JH, Larsson A, DF MA, McNamee L, Nin N, Qiu H, Ranieri M, Rubenfeld GD, Thompson BT, Wrigge H, Slutsky AS, Pesenti A. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42:1865–1876. doi: 10.1007/s00134-016-4571-5.

Source: PubMed

3
Abonnere