Virtual reality and the role of the prefrontal cortex in adults and children

Lutz Jäncke, Marcus Cheetham, Thomas Baumgartner, Lutz Jäncke, Marcus Cheetham, Thomas Baumgartner

Abstract

In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

Keywords: DLPFC; adults; brain imaging; brain maturation; children; fmRI; presence.

Figures

Figure 1
Figure 1
Demonstration of brain areas that are more strongly activated during the presentation of a roller coaster scenario that evokes high presence versus low presence. (A) Increased hemodynamic responses overlaid on a three-dimensional (3D) rendered brain and two sagittal brain slices. (B) Schematic depiction of the stronger activated brain areas during the high presence condition.
Figure 2
Figure 2
Correlations between subjective presence experience and the hemodynamic responses in the right-sided (A) and left-sided (B) DLPFC. The correlations were calculated between the mean hemodynamic response in the DLPFC and the subjective presence measures.
Figure 3
Figure 3
(A) Network, which is down-regulated (in blue) or up-regulated (in red) by the right-sided or left-sided DLPFC in adults. The down-regulated brain areas show “negative connectivity” with the right-sided DLPFC implying that strong activation of the right-sided DLPFC is associated with reduced activation in the network (and vice versa). The up-regulated brain areas show “positive connectivity” with the left-sided DLPFC. (B) The network shows “positive connectivity” with the right-sided DLPFC and “negative connectivity” with the left-sided DLPFC in children. Actually, there is no down-regulation but rather an up-regulation by the right-sided DLPFC in children.

References

    1. Amodio D. M., Frith C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–27710.1038/nrn1884
    1. Baumgartner T., Speck D., Wettstein D., Masnari O., Beeli G., Jäncke L. (2008). Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosci. 2, 8.10.3389/neuro.09.008.2008
    1. Baumgartner T., Valko L., Esslen M., Jäncke L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. Cyberpsychol. Behav. 9, 30–4510.1089/cpb.2006.9.30
    1. Baumgartner T., Willi M., Jäncke L. (2007). Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: a transcranial magnetic stimulation study. Neuroreport 18, 261–26510.1097/WNR.0b013e328012272e
    1. Beeli G., Casutt G., Baumgartner T., Jäncke L. (2008a). Modulating presence and impulsiveness by external stimulation of the brain. Behav. Brain Funct. 4, 33.10.1186/1744-9081-4-33
    1. Beeli G., Koeneke S., Gasser K., Jäncke L. (2008b). Brain stimulation modulates driving behavior. Behav. Brain Funct. 4, 34.10.1186/1744-9081-4-34
    1. Blanke O., Arzy S. (2005). The out-of-body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist 11, 16–2410.1177/1073858404270885
    1. Blanke O., Landis T., Spinelli L., Seeck M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain 127, 243–25810.1093/brain/awh040
    1. Blanke O., Metzinger T. (2009). Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–1310.1016/j.tics.2008.10.003
    1. Blanke O., Ortigue S., Landis T., Seeck M. (2002). Stimulating illusory own-body perceptions. Nature 419, 269–27010.1038/419269a
    1. Botvinick M., Cohen J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature 391, 756.10.1038/35784
    1. Botvinick M., Nystrom L. E., Fissell K., Carter C. S., Cohen J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–18110.1038/46035
    1. Brandt T., Dieterich M. (1999). The vestibular cortex. Its location, functions, and disorders. Ann. N. Y. Acad. Sci. 871, 293–31210.1111/j.1749-6632.1999.tb09193.x
    1. Brandt T., Dieterich M., Danek A. (1994). Vestibular cortex lesions affect the perception of verticality. Ann Neurol. 35, 403–41210.1002/ana.410350406
    1. Bremmer F., Schlack A., Duhamel J. R., Graf W., Fink G. R. (2001). Space coding in primate posterior parietal cortex. Neuroimage 14, S46–S51.10.1006/nimg.2001.0817
    1. Bünning S., Blanke O. (2005). The out-of body experience: precipitating factors and neural correlates. Prog. Brain Res. 150, 331–35010.1016/S0079-6123(05)50024-4
    1. Calvert G. A., Campbell R., Brammer M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr. Biol. 10, 649–65710.1016/S0960-9822(00)00513-3
    1. Carter C. S., Botvinick M. M., Cohen J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10, 49–57
    1. Davies P. L., Segalowitz S. J., Gavin W. J. (2004). Development of response-monitoring ERPs in 7- to 25-year-olds. Dev. Neuropsychol. 25, 355–37610.1207/s15326942dn2503_6
    1. Ehrsson H. H., Holmes N. P., Passingham R. E. (2005). Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–1057310.1523/JNEUROSCI.0800-05.2005
    1. Esslen M., Metzler S., Pascual-Marqui R., Jäncke L. (2008). Pre-reflective and reflective self-reference: a spatiotemporal EEG analysis. Neuroimage 42, 437–44910.1016/j.neuroimage.2008.01.060
    1. Fasold O., von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17, 1384–139310.1006/nimg.2002.1241
    1. Freeman J., Avons S. E., Meddis R., Pearson D. E., IJsselsteijn W. I. (2000). Using behavioral realism to estimate presence: a study of the utility of postural responses to motion stimuli. Presence-Teleop. Virt. 9, 149–164
    1. Freeman J., Avons S. E., Pearson D. E., IJsselsteijn W. A. (1999). Effects of sensory information and prior experience on direct subjective ratings of presence. Presence-Teleop. Virt. 8, 1–13
    1. Gallese V. (2005). Embodied simulation: from neurons to phenomenal experience. Phenomenology and the Cognitive Sciences 4, 22–4810.1007/s11097-005-4737-z
    1. Giedd J. N., Blumenthal J., Jeffries N. O., Castellanos F. X., Liu H., Zijdenbos al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–86310.1038/13158
    1. Gogtay N., Giedd J. N., Lusk L., Hayashi K. M., Greenstein D., Vaituzis C. al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101, 8174–817910.1073/pnas.0402680101
    1. Graziano M. S., Taylor C. S., Moore T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–85110.1016/S0896-6273(02)00698-0
    1. Greicius M. D., Kiviniemi V., Tervonen O., Vainionpaa V., Alahuhta S., Reiss A. al. (2008). Persistent default-mode network connectivity during light sedation. Hum. Brain Mapp. 29, 839–84710.1002/hbm.20537
    1. Gusnard D. A., Akbudak E., Shulman G. L., Raichle M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 4259–426410.1073/pnas.071043098
    1. Halligan P. W., Marshall J. C. (1991). Left neglect for near but not far space in man. Nature 350, 498–50010.1038/350498a0
    1. IJsselsteijn W. A., de Ridder H., Freeman J., Avons S. E. (2000). Presence: concept, determinants and measurement. P. Soc. Photo-opt Ins. 3959, 520–529
    1. Jäncke L., Brunner B., Esslen M. (2008). Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex. Neuroreport 19, 1127–1130
    1. Jeannerod M., Arbib M. A., Rizzolatti G., Sakata H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–32010.1016/0166-2236(95)93921-J
    1. Jordan K., Heinze H. J., Lutz K., Kanowski M., Jäncke L. (2001). Cortical activations during the mental rotation of different visual objects. Neuroimage 13, 143–15210.1006/nimg.2000.0677
    1. Jordan K., Schadow J., Wuestenberg T., Heinze H. J., Jäncke L. (2004). Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task. Neuroreport 15, 135–14010.1097/00001756-200401190-00026
    1. Knoch D. (2007). Funktionelle Hemisphärenasymmetrie der Selbstkontrolle. Zeitschrift für Neuropsychologie 18, 183–19210.1024/1016-264X.18.3.183
    1. Lenggenhager B., Tadi T., Metzinger T., Blanke O. (2007). Video ergo sum: manipulating bodily self-consciousness. Science 317, 1096–109910.1126/science.1143439
    1. Makin T. R., Holmes N. P., Ehrsson H. H. (2008). On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191, 1–1010.1016/j.bbr.2008.02.041
    1. Makin T. R., Holmes N. P., Zohary E. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J. Neurosci. 27, 731–74010.1523/JNEUROSCI.3653-06.2007
    1. Mast F., Jäncke L. (2007). Spatial Processing in Navigation, Imagery and Perception. Springer Science and Business Media, LLC; 10.1007/978-0-387-71978-8
    1. Meehan M., Razzaque S., Insko B., Whitton M., Brooks F. P. (2005). Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30, 239–25810.1007/s10484-005-6381-3
    1. Munzert J., Lorey B., Zentgraf K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Res. Rev. [epub ahead of print].
    1. Nadel L., Hardt O. (2004). The spatial brain. Neuropsychology 18, 473–47610.1037/0894-4105.18.3.473
    1. Ridderinkhof K. R., Ullsperger M., Crone E. A., Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–44710.1126/science.1100301
    1. Rilling J. K., Barks S. K., Parr L. A., Preuss T. M., Faber T. L., Pagnoni al. (2007). A comparison of resting-state brain activity in humans and chimpanzees. Proc. Natl. Acad. Sci. U.S.A. 104, 17146–1715110.1073/pnas.0705132104
    1. Rizzolatti G., Fadiga L., Fogassi L., Gallese V. (1997a). The space around us. Science 277, 190–19110.1126/science.277.5323.190
    1. Rizzolatti G., Fogassi L., Gallese V. (1997b). Parietal cortex: from sight to action. Curr. Opin. Neurobiol. 7, 562–56710.1016/S0959-4388(97)80037-2
    1. Sanchez-Vives M. V., Slater M. (2005). From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–33910.1038/nrn1651
    1. Segalowitz S. J., Davies P. L. (2004). Charting the maturation of the frontal lobe: an electrophysiological strategy. Brain Cogn. 55, 116–13310.1016/S0278-2626(03)00283-5
    1. Slater M., Perez-Marcos D., Ehrsson H. H., Sanchez-Vives M. V. (2008). Towards a digital body: the virtual arm illusion. Front. Hum. Neurosci. 2, 6.10.3389/neuro.09.006.2008
    1. Slater M., Steed A. (2000). A virtual presence counter. Presence-Teleop. Virt. 9, 413–434
    1. Vorderer P., Wirth W., Gouveia F. R., Biocca F., Saari T., Jäncke F. et al. (2004). MEC Spatial Presence Questionnaire (MEC-SPQ): Short Documentation and Instructions for Application. Report to the European Community, Project Presence: MEC (IST-2001-37661).
    1. Wiederhold B. K., Kaneda M., Lurie Y. M., Cabral I., May T., Wiederhold M. D. (2000). The use of physiological monitoring to determine the concepts of presence and immersion in virtual worlds. Appl. Psychophysiol. Biofeedback 25, 263–264
    1. Wirth W., Hartmann T., Boecking S., Vorderer P., Klimmt C., Schramm al. (2007). A process model of the formation of spatial presence experiences. Media Psychol. 9, 493–525
    1. Witmer B. G., Singer M. J. (1998). Measuring presence in virtual environments: a presence questionnaire. Presence-Teleop. Virt. 7, 225–240

Source: PubMed

3
Abonnere