Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations

Himanshu Kumar, Elloise du Toit, Amruta Kulkarni, Juhani Aakko, Kaisa M Linderborg, Yumei Zhang, Mark P Nicol, Erika Isolauri, Baoru Yang, Maria C Collado, Seppo Salminen, Himanshu Kumar, Elloise du Toit, Amruta Kulkarni, Juhani Aakko, Kaisa M Linderborg, Yumei Zhang, Mark P Nicol, Erika Isolauri, Baoru Yang, Maria C Collado, Seppo Salminen

Abstract

Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland), Africa (South Africa), and Asia (China), on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the 1 month of lactation. Altogether, 80 women (20 from each country) participated in the study, with equal number of women who delivered by vaginal or cesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6%) observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p = 0.002). Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes (mean relative abundance of 3.75) whereas Chinese women had highest amount of Actinobacteria (mean relative abundance 5.7). Women who had had a cesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p < 0.05). Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids (MUFA) were negatively associated with Proteobacteria (r = -0.43, p < 0.05), while Lactobacillus genus was associated with MUFA (r = -0.23, p = 0.04). These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.

Keywords: delivery; fatty acids; geography; human milk; microbiome.

Figures

FIGURE 1
FIGURE 1
Comparison of percentage relative abundances of fatty acids taking mode of delivery and country as factors (A) Triacyglycerols (B) Phospholipids; (C) PCA of triacyglycerols (D) PCA of phospholipids, ellipses in the plot represent 95% confidence interval of grouping based on countries.
FIGURE 2
FIGURE 2
Comparison of percentage relative abundances taking mode of delivery and country as factor at (A) Phyla level (top 5 phylotypes based on relative abundance), (B) Genus level (top 30 genera based on total relative abundance).
FIGURE 3
FIGURE 3
(A) Shared phylotypes at family level across countries. (B) RDA analysis at OTU level, across different countries.
FIGURE 4
FIGURE 4
PICRUSt based predicted metagenome using KEGG annotation at levels (A) L2 (B) L3, representing LDA scores for differentially abundant genes/pathways (Log LDA = 2) across different countries.
FIGURE 5
FIGURE 5
Heatmap to show correlation between lipidomic data and microbiota composition at phylum level (A) and genus level (B).

References

    1. Aaltonen J., Ojala T., Laitinen K., Poussa T., Ozanne S., Isolauri E. (2011). Impact of maternal diet during pregnancy and breastfeeding on infant metabolic programming: a prospective randomized controlled study. Eur. J. Clin. Nutr. 65 10–19. 10.1038/ejcn.2010.225
    1. Boersma E. R., Offringa P. J., Muskiet F., Chase W. M., Simmons I. J. (1991). Vitamin E, lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: an international comparative study. Am. J. Clin. Nutr. 53 1197–1204.
    1. Brenna J. T., Varamini B., Jensen R. G., Diersen-Schade D. A., Boettcher J. A., Arterburn L. M. (2007). Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 85 1457–1464.
    1. Cabrera-Rubio R., Collado M. C., Laitinen K., Salminen S., Isolauri E., Mira A. (2012). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96 544–551. 10.3945/ajcn.112.037382
    1. Cabrera-Rubio R., Mira-Pascual L., Mira A., Collado M. C. (2016). Impact of mode of delivery on the milk microbiota composition of healthy women. J. Dev. Orig. Health Dis. 7 54–60. 10.1017/s2040174415001397
    1. Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303
    1. Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6 1621–1624. 10.1038/ismej.2012.8
    1. Carrothers J. M., York M. A., Brooker S. L., Lackey K. A., Williams J. E., Shafii B., et al. (2015). Fecal microbial community structure is stable over time and related to variation in macronutrient and micronutrient intakes in lactating women. J. Nutr. 145 2379–2388. 10.3945/jn.115.211110
    1. Christie W. W. (1982). A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 23 1072–1075.
    1. Collado M. C., Laitinen K., Salminen S., Isolauri E. (2012). Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72 77–85. 10.1038/pr.2012.42
    1. Collado M. C., Santaella M., Mira-Pascual L., Martinez-Arias E., Khodayar-Pardo P., Ros G., et al. (2015). Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breast milk from term and preterm deliveries. Nutrients 7 8577–8591. 10.3390/nu7105415
    1. Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. (2015). Lipid quality in infant nutrition: current knowledge and future opportunities. J. Pediatr. Gastroenterol. Nutr. 61 8–17. 10.1097/MPG.0000000000000818
    1. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., et al. (2010). Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51 77–84. 10.1097/MPG.0b013e3181d1b11e
    1. Fernandez L., Langa S., Martin V., Jimenez E., Martin R., Rodriguez J. M. (2013). The microbiota of human milk in healthy women. Cell Mol. Biol. (Noisy-le-grand) 59 31–42.
    1. Folch J., Lees M., Sloane-Stanley G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226 497–509.
    1. Hamilton J. G., Comai K. (1988). Rapid separation of neutral lipids, free fatty acids and polar lipids using prepacked silica Sep-Pak columns. Lipids 23 1146–1149. 10.1007/BF02535281
    1. Hoashi M., Meche L., Mahal L. K., Bakacs E., Nardella D., Naftolin F., et al. (2015). Human milk bacterial and glycosylation patterns differ by delivery mode. Reprod. Sci. 23 902–907. 10.1177/1933719115623645
    1. Hunt K. M., Foster J. A., Forney L. J., Schütte U. M., Beck D. L., Abdo Z., et al. (2011). Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6:e21313 10.1371/journal.pone.0021313
    1. Jost T., Lacroix C., Braegger C. P., Rochat F., Chassard C. (2013). Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16 2891–2904. 10.1111/1462-2920.12238
    1. Kelishadi R., Farajian S. (2014). The protective effects of breastfeeding on chronic non-communicable diseases in adulthood: a review of evidence. Adv. Biomed. Res. 3 3 10.4103/2277-9175.124629
    1. Khodayar-Pardo P., Mira-Pascual L., Collado M. C., Martinez-Costa C. (2014). Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34 599–605. 10.1038/jp.2014.47
    1. Krešić G., Dujmović M., Mandić M. L., Delaš I. (2013). Relationship between Mediterranean diet and breast milk fatty acid profile: a study in breastfeeding women in Croatia. Dairy Sci. Technol. 93 287–301. 10.1007/s13594-013-0125-6
    1. Langille M. G., Zaneveld J., Caporaso J. G., McDonald D., Knights D., Reyes J. A., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 814–821. 10.1038/nbt.2676
    1. Lemas D. J., Young B. E., Baker P. R., II, Tomczik A. C., Soderborg T. K., Hernandez T. L., et al. (2016). Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am. J. Clin. Nutr. 103 1291–1300. 10.3945/ajcn.115.126375
    1. Liu G., Ding Z., Li X., Chen X., Wu Y., Xie L. (2016). Relationship between polyunsaturated fatty acid levels in maternal diets and human milk in the first month post-partum. J. Hum. Nutr. Diet. 29 405–410. 10.1111/jhn.12337
    1. Lloyd-Price J., Abu-Ali G., Huttenhower C. (2016). The healthy human microbiome. Genome Med. 8 51 10.1186/s13073-016-0307-y
    1. Mäkelä J., Linderborg K., Niinikoski H., Yang B., Lagstrom H. (2013). Breast milk fatty acid composition differs between overweight and normal weight women: the STEPS Study. Eur. J. Nutr. 52 727–735. 10.1007/s00394-012-0378-5
    1. R Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    1. Robinson D. T., Caplan M. S. (2015). Linking fat intake, the intestinal microbiome, and necrotizing enterocolitis in premature infants. Pediatr. Res. 77 121–126. 10.1038/pr.2014.155
    1. Schmieder R., Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27 863–864. 10.1093/bioinformatics/btr026
    1. Sinkiewicz G., Ljunggren L. (2008). Occurrence of Lactobacillus reuteri in human breast milk. Microb. Ecol. Health Dis. 20 122–126. 10.1080/08910600802341007
    1. Soto A., Martín V., Jiménez E., Mader I., Rodríguez J. M., Fernández L. (2014). Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59 78–88. 10.1097/MPG.0000000000000347
    1. Ted J., Christophe L., Christian P. B., Florence R., Christophe C. (2014). Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16 2891–2904. 10.1111/1462-2920.12238
    1. Urbaniak C., Angelini M., Gloor G. B., Reid G. (2016). Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4 1–9. 10.1186/s40168-015-0145-y
    1. Vatanen T., Kostic A. D., d’Hennezel E., Siljander H., Franzosa E. A., Yassour M., et al. (2016). Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165 842–853. 10.1016/j.cell.2016.04.007
    1. Walker W. A., Iyengar R. S. (2015). Breast milk, microbiota and intestinal immune homeostasis. Pediatr. Res. 77 220–228. 10.1038/pr.2014.160
    1. Yahvah K. M., Brooker S. L., Williams J. E., Settles M., McGuire M. A., McGuire M. K. (2015). Elevated dairy fat intake in lactating women alters milk lipid and fatty acids without detectible changes in expression of genes related to lipid uptake or synthesis. Nutr. Res. 35 221–228. 10.1016/j.nutres.2015.01.004

Source: PubMed

3
Abonnere