The BrAID study protocol: integration of machine learning and transcriptomics for brugada syndrome recognition

M A Morales, M Piacenti, M Nesti, G Solarino, P Pieragnoli, G Zucchelli, S Del Ry, M Cabiati, F Vozzi, M A Morales, M Piacenti, M Nesti, G Solarino, P Pieragnoli, G Zucchelli, S Del Ry, M Cabiati, F Vozzi

Abstract

Background: Type 1 Brugada syndrome (BrS) is a hereditary arrhythmogenic disease showing peculiar electrocardiographic (ECG) patterns, characterized by ST-segment elevation in the right precordial leads, and risk of Sudden Cardiac Death (SCD). Furthermore, although various ECG patterns are described in the literature, different individual ECG may show high-grade variability, making the diagnosis problematic. The study aims to develop an innovative system for an accurate diagnosis of Type 1 BrS based on ECG pattern recognition by Machine Learning (ML) models and blood markers analysis trough transcriptomic techniques.

Methods: The study is structured in 3 parts: (a) a retrospective study, with the first cohort of 300 anonymized ECG obtained in already diagnosed Type 1 BrS (75 spontaneous, 150 suspected) and 75 from control patients, which will be processed by ML analysis for pattern recognition; (b) a prospective study, with a cohort of 11 patients with spontaneous Type 1 BrS, 11 with drug-induced Type 1 BrS, 11 suspected BrS but negative to Na + channel blockers administration, and 11 controls, enrolled for ECG ML analysis and blood collection for transcriptomics and microvesicles analysis; (c) a validation study, with the third cohort of 100 patients (35 spontaneous and 35 drug-induced BrS, 30 controls) for ML algorithm and biomarkers testing.

Discussion: The BrAID system will help clinicians improve the diagnosis of Type 1 BrS by using multiple information, reducing the time between ECG recording and final diagnosis, integrating clinical, biochemical and ECG information thus favoring a more effective use of available resources. Trial registration Clinical Trial.gov, NCT04641585. Registered 17 November 2020, https://ichgcp.net/clinical-trials-registry/NCT04641585.

Keywords: Brugada syndrome; Machine learning; RNA; Transcriptomic.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Organization of retrospective study
Fig. 2
Fig. 2
SPIRIT figure of retrospective and validation BrAID study

References

    1. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–1396. doi: 10.1016/0735-1097(92)90253-J.
    1. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC) Europace. 2015;2015:1601–1687.
    1. Quan X-Q, Li S, Liu R, Zheng K, Wu X-F, Tang Q. A meta-analytic review of prevalence for Brugada ECG patterns and the risk for death. Medicine (Baltimore) 2016;95:e5643. doi: 10.1097/MD.0000000000005643.
    1. Behere SP, Weindling SN. Brugada syndrome in children—stepping into unchartered territory. Ann Pediatr Cardiol. 2017;10:248–258. doi: 10.4103/apc.APC_49_17.
    1. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46. doi: 10.1016/j.hrthm.2009.09.069.
    1. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–296. doi: 10.1038/32675.
    1. Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome. Method Debakey Cardiovasc J. 2014;10:25–28. doi: 10.14797/mdcj-10-1-25.
    1. Cerrone M, Delmar M. Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med. 2014;24:184–190. doi: 10.1016/j.tcm.2014.02.001.
    1. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129:1092–1103. doi: 10.1161/CIRCULATIONAHA.113.003077.
    1. Sarquella-Brugada G, Campuzano O, Arbelo E, Brugada J, Brugada R. Brugada syndrome: clinical and genetic findings. Genet Med. 2016;18:3–12. doi: 10.1038/gim.2015.35.
    1. Monasky MM, Micaglio E, Ciconte G, Pappone C. Brugada syndrome: oligogenic or mendelian disease? IJMS. 2020;21:1687. doi: 10.3390/ijms21051687.
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med.; 2015, 405–24.
    1. Pappone C, Micaglio E, Locati ET, Monasky MM. The omics of channelopathies and cardiomyopathies: what we know and how they are useful. Eur Heart J Suppl. 2020;22:L105–L109. doi: 10.1093/eurheartj/suaa146.
    1. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. Transcriptome profiling in human diseases: new advances and perspectives. IJMS. 2017;18:1652. doi: 10.3390/ijms18081652.
    1. Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S. MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol. 2013;33:206–214. doi: 10.1161/ATVBAHA.112.300141.
    1. Gjuvsland AB, Vik JO, Beard DA, Hunter PJ, Omholt SW. Bridging the genotype-phenotype gap: what does it take? J Physiol. 2013;591:2055–2066. doi: 10.1113/jphysiol.2012.248864.
    1. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–593. doi: 10.1038/nri2567.
    1. Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arteriosc Thromb Vasc Biol. 1997;17:646–653. doi: 10.1161/01.ATV.17.4.646.
    1. Zhou S-S, Jin J-P, Wang J-Q, Zhang Z-G, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–1084. doi: 10.1038/aps.2018.30.
    1. Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, et al. Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget. 2018;9:17238–17254. doi: 10.18632/oncotarget.24428.
    1. Bayés de Luna A, Brugada J, Baranchuk A, Borggrefe M, Breithardt G, Goldwasser D, et al. Current electrocardiographic criteria for diagnosis of Brugada pattern: a consensus report. J Electrocardiol. 2012;45:433–42.
    1. Wilde AAM, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation.; 2002; 2514–9.
    1. Probst V, Le Marec H. Brugada syndrome: where are you? Europace. 2009;11:1260–1261. doi: 10.1093/europace/eup267.
    1. Wilde AAM, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J. 2002; 1648–54.
    1. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation; 2005;. 659–70.
    1. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–1541. doi: 10.1161/CIRCULATIONAHA.108.840827.
    1. Zipes DP, Calkins H, Daubert JP, Ellenbogen KA, Field ME, Fisher JD, et al. 2015 ACC/AHA/HRS advanced training statement on clinical cardiac electrophysiology (a revision of the ACC/AHA 2006 update of the clinical competence statement on invasive electrophysiology studies, catheter ablation, and cardioversion) Heart Rhythm. 2016;13:e3–e37. doi: 10.1016/j.hrthm.2015.09.014.
    1. Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome: A Pooled Analysis. Circulation. 2016;133:622–30.
    1. Antzelevitch C, Yan G-X, Ackerman MJ, Borggrefe M, Corrado D, Guo J, et al. J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace. 2017; 665–94.
    1. Gasparini M, Priori SG, Mantica M, Napolitano C, Galimberti P, Ceriotti C, et al. Flecainide test in Brugada syndrome: a reproducible but risky tool. Pacing Clin Electrophysiol. 2003;26:338–341. doi: 10.1046/j.1460-9592.2003.00045.x.
    1. Rolf S, Bruns H-J, Wichter T, Kirchhof P, Ribbing M, Wasmer K, et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003;24:1104–1112. doi: 10.1016/S0195-668X(03)00195-7.
    1. Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher J-P. Calculating sample size estimates for RNA sequencing data. J Comput Biol. 2013;20:970–978. doi: 10.1089/cmb.2012.0283.
    1. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol.; 2010;11:R106–12.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–621. doi: 10.1186/s13059-014-0550-8.
    1. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd edition) (Springer Series in Statistics) - SILO.PUB. 2017.
    1. Casado-Arroyo R, Berne P, Rao JY, Rodriguez-Mañero M, Levinstein M, Conte G, et al. Long-term trends in newly diagnosed brugada syndrome: implications for risk stratification. J Am Coll Cardiol. 2016;68:614–623. doi: 10.1016/j.jacc.2016.05.073.
    1. Chatterjee D, Pieroni M, Fatah M, Charpentier F, Cunningham KS, Spears DA, et al. An autoantibody profile detects Brugada syndrome and identifies abnormally expressed myocardial proteins. Eur Heart J. 2020;41:2878–2890. doi: 10.1093/eurheartj/ehaa383.

Source: PubMed

3
Abonnere