A phase II study of the PI3K inhibitor copanlisib in combination with the anti-CD20 monoclonal antibody rituximab for patients with marginal zone lymphoma: treatment rationale and protocol design of the COUP-1 trial

Alexander Grunenberg, Lisa M Kaiser, Stephanie Woelfle, Birgit Schmelzle, Andreas Viardot, Peter Möller, Thomas F E Barth, Rainer Muche, Jens Dreyhaupt, Markus Raderer, Barbara Kiesewetter, Christian Buske, Alexander Grunenberg, Lisa M Kaiser, Stephanie Woelfle, Birgit Schmelzle, Andreas Viardot, Peter Möller, Thomas F E Barth, Rainer Muche, Jens Dreyhaupt, Markus Raderer, Barbara Kiesewetter, Christian Buske

Abstract

Background: Advanced stage marginal zone lymphoma (MZL) is an incurable indolent B-cell lymphoma, for which a wide variety of treatments ranging from single agent rituximab to more dose intense immunochemotherapy exists. One of the major goals in this palliative setting is to develop chemotherapy-free treatments, which approach the efficacy of immunochemotherapies, but avoid chemotherapy associated toxicity in this often elderly patient population. The PI3K inhibitor copanlisib has recently shown remarkable clinical activity in refractory or relapsed indolent B-cell lymphomas, among them MZL. Based on these data, copanlisib monotherapy was granted breakthrough designation by the FDA for the treatment of adult patients with relapsed marginal zone lymphoma who have received at least two prior therapies. However, data are still limited in particular for MZL. Based on this, the COUP-1 trial aims at testing the toxicity and efficacy of copanlisib in combination with rituximab in treatment naive and relapsed MZL.

Methods: COUP-1 is a prospective, multicenter, single-arm, open-label, non-randomized phase II trial of 6 cycles (28 days cycle) of copanlisib (60 mg intravenous day 1, 8, 15) and rituximab (375 mg/m2 intravenous day 1) in the induction phase followed by a maintenance phase of copanlisib (d1, d15 every 4 weeks for a maximum of 12 cycles) and rituximab (d1 every 8 weeks for a maximum of 12 cycles) in patients aged ≥18 years with previously untreated or relapsed MZL in need of treatment. A total of 56 patients are to be enrolled. Primary endpoint is the complete response (CR) rate determined 12 months after start of induction therapy. Secondary endpoints include the overall response (OR) rate, progression free survival (PFS), overall survival (OS), safety and patient related outcome with quality of life. The study includes a translational bio-sampling program with the prospect to measure minimal residual disease. The study was initiated in November 2019.

Discussion: The COUP-1 trial evaluates the efficacy and toxicity of the treatment of copanlisib in combination with rituximab in patients with MZL and additionally offers the chance for translational research in this heterogenous type of lymphoma.

Trial registration: ClinicalTrials.gov : NCT03474744 . Registration date: 03/23/2018.

Keywords: Copanlisib; Marginal zone lymphoma; PI3K inhibitor; Rituximab.

Conflict of interest statement

Copanlisib and Rituximab are provided by Bayer AG and Celltrion Healthcare. The authors declare no conflicts of interest. The study was not externally reviewed. The authors have no financial relationship with Bayer AG or Celltrion Healthcare.

Figures

Fig. 1
Fig. 1
PI3K signaling pathway in physiological and malignant B-cells. PI3K activity is regulated in both a B-cell receptor (BCR) and receptor tyrosine kinase (RTK) mode. Upon RTK stimulation PI3K catalyses phosphatidylinositol 4,5-bisphosphonate (PIP2) to generate phosphatidylinositol 3,4,5-triphosphate (PIP3), resulting in recruitment of AKT (Protein kinase B) and activation of the mTOR (mechanistic target of rapamycin) pathway. On the other hand, BCR stimulation leads to the recruitment of BTK (bruton tyrosine kinase) via PIP3 with downstream activation of the MAPK (mitogen-activated protein kinase) and NFĸB (nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells) signaling pathway. Pathological triggering of both signaling pathways eventually results in increased proliferation and survival advantage of the B-cell. MZL = marginal zone lymphoma, Syk = spleen tyrosine kinase, Lyn = kinase
Fig. 2
Fig. 2
Trial design. i.v. = intravenous
Fig. 3
Fig. 3
Timeline of biomarker analyses of the COUP-1 trial

References

    1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569.
    1. Arcaini L, Rossi D, Paulli M. Splenic marginal zone lymphoma: from genetics to management. Blood. 2016;127(17):2072–2081. doi: 10.1182/blood-2015-11-624312.
    1. Thieblemont C, Molina T, Davi F. Optimizing therapy for nodal marginal zone lymphoma. Blood. 2016;127(17):2064–2071. doi: 10.1182/blood-2015-12-624296.
    1. Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood. 2016;127(17):2082–2092. doi: 10.1182/blood-2015-12-624304.
    1. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood. 1997;90(6):2188–2195. doi: 10.1182/blood.V90.6.2188.
    1. Golay J, Introna M. Mechanism of action of therapeutic monoclonal antibodies: promises and pitfalls of in vitro and in vivo assays. Arch Biochem Biophys. 2012;526(2):146–153. doi: 10.1016/j.abb.2012.02.011.
    1. Beers SA, Cragg MS, Glennie MJ. Complement: help or hindrance? Blood. 2009;114(27):5567–5568. doi: 10.1182/blood-2009-10-249466.
    1. Wang SY, Veeramani S, Racila E, Cagley J, Fritzinger DC, Vogel CW, St John W, Weiner GJ. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood. 2009;114(26):5322–5330. doi: 10.1182/blood-2009-01-200469.
    1. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in Cancer immunotherapy. Front Immunol. 2015;6:368.
    1. Bezombes C, Fournie JJ, Laurent G. Direct effect of rituximab in B-cell-derived lymphoid neoplasias: mechanism, regulation, and perspectives. Mol Cancer Res. 2011;9(11):1435–1442. doi: 10.1158/1541-7786.MCR-11-0154.
    1. Fuli F, Wei W, Guanglun L, Xiaoyan J, Xiaodan L, Xue S, Xianghui B, Xu H, Yangang W. Efficacy and safety of rituximab in marginal zone lymphoma: a meta-analysis of 13 studies. Int J Clin Exp Med. 2016;9(8):17001–17010.
    1. Zucca E, Conconi A, Martinelli G, Bouabdallah R, Tucci A, Vitolo U, Martelli M, Pettengell R, Salles G, Sebban C, Guillermo AL, Pinotti G, Devizzi L, Morschhauser F, Tilly H, Torri V, Hohaus S, Ferreri AJM, Zachée P, Bosly A, Haioun C, Stelitano C, Bellei M, Ponzoni M, Moreau A, Jack A, Campo E, Mazzucchelli L, Cavalli F, Johnson P, Thieblemont C. Final results of the IELSG-19 randomized trial of mucosa-associated lymphoid tissue lymphoma: improved event-free and progression-free survival with rituximab plus Chlorambucil versus either Chlorambucil or rituximab monotherapy. J Clin Oncol. 2017;35(17):1905–1912. doi: 10.1200/JCO.2016.70.6994.
    1. Zucca E, Conconi A, Laszlo D, Lopez-Guillermo A, Bouabdallah R, Coiffier B, Sebban C, Jardin F, Vitolo U, Morschhauser F, et al. Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B-cell lymphoma: 5-year analysis of the IELSG-19 randomized study. J Clin Oncol. 2013;31(5):565–572. doi: 10.1200/JCO.2011.40.6272.
    1. Herold M, Hoster E, Janssens A, McCarthy H, Tedeschi A, Pocock C, Rosta A, Schmidt P, Trněný M, Burciu A, Fingerle-Rowson G, Rufibach K, Zeuner H, Hiddemann W, Marcus R. Imunochemotherapy with Obinutuzumab or rituximab in a subset of patients in the randomised gallium trial with previously untreated marginal zone lymphoma (MZL) Hematol Oncol. 2017;35(S2):146–147. doi: 10.1002/hon.2437_136.
    1. Brown JR, Friedberg JW, Feng Y, Scofield S, Phillips K, Dal Cin P, Joyce R, Takvorian RW, Fisher DC, Fisher RI, Liesveld J, Marquis D, Neuberg D, Freedman AS. A phase 2 study of concurrent fludarabine and rituximab for the treatment of marginal zone lymphomas. Br J Haematol. 2009;145(6):741–748. doi: 10.1111/j.1365-2141.2009.07677.x.
    1. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–1657. doi: 10.1126/science.296.5573.1655.
    1. Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, Fracasso PR, Wilkie DP, Hentemann M, Wilhelm SM, Scott WJ, Mumberg D, Ziegelbauer K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models. Mol Cancer Ther. 2013;12(11):2319–2330. doi: 10.1158/1535-7163.MCT-12-0993-T.
    1. Patnaik A, Appleman LJ, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Weiss GJ, Sachdev JC, Chadha M, Fulk M, Ejadi S, Mountz JM, Lotze MT, Toledo FGS, Chu E, Jeffers M, Peña C, Xia C, Reif S, Genvresse I, Ramanathan RK. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin's lymphomas. Ann Oncol. 2016;27(10):1928–1940. doi: 10.1093/annonc/mdw282.
    1. Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, Verhoef G, Linton K, Thieblemont C, Vitolo U, Hiemeyer F, Giurescu M, Garcia-Vargas J, Gorbatchevsky I, Liu L, Koechert K, Peña C, Neves M, Childs BH, Zinzani PL. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–2178. doi: 10.1093/annonc/mdx289.
    1. Lenz G, Hawkes E, Verhoef G, Haioun C, Thye Lim S, Seog Heo D, Ardeshna K, Chong G, Haaber J, Shi W, Gorbatchevsky I, Lippert S, Hiemeyer F, Piraino P, Beckmann G, Peña C, Buvaylo V, Childs BH, Salles G. Single-agent activity of phosphatidylinositol 3-kinase inhibition with copanlisib in patients with molecularly defined relapsed or refractory diffuse large B-cell lymphoma. Leukemia. 2020;34(8):2184–2197. doi: 10.1038/s41375-020-0743-y.
    1. Dreyling M, Santoro A, Mollica L, Leppa S, Follows GA, Lenz G, Kim WS, Nagler A, Panayiotidis P, Demeter J, et al. Phosphatidylinositol 3-kinase inhibition by Copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35(35):3898–3905. doi: 10.1200/JCO.2017.75.4648.
    1. Noy A, de Vos S, Thieblemont C, Martin P, Flowers CR, Morschhauser F, Collins GP, Ma S, Coleman M, Peles S, Smith S, Barrientos JC, Smith A, Munneke B, Dimery I, Beaupre DM, Chen R. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129(16):2224–2232. doi: 10.1182/blood-2016-10-747345.
    1. Tarantelli C, Lange M, Gaudio E, Cascione L, Spriano F, Kwee I, Arribas AJ, Rinaldi A, Jourdan T, Berthold M, Sturz A, Sperl C, Margheriti F, Scalise L, Gritti G, Rossi D, Stathis A, Liu N, Zucca E, Politz O, Bertoni F. Copanlisib synergizes with conventional and targeted agents including venetoclax in B- and T-cell lymphoma models. Blood Adv. 2020;4(5):819–829. doi: 10.1182/bloodadvances.2019000844.
    1. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn IW, Flowers CR, Martin P, Viardot A, Blum KA, Goy AH, Davies AJ, Zinzani PL, Dreyling M, Johnson D, Miller LL, Holes L, Li D, Dansey RD, Godfrey WR, Salles GA. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–1018. doi: 10.1056/NEJMoa1314583.
    1. Cheah CY, Nastoupil LJ, Neelapu SS, Forbes SG, Oki Y, Fowler NH. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood. 2015;125(21):3357–3359. doi: 10.1182/blood-2015-03-633156.
    1. Barr PM, Saylors GB, Spurgeon SE, Cheson BD, Greenwald DR, O'Brien SM, Liem AK, McLntyre RE, Joshi A, Abella-Dominicis E, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–2415. doi: 10.1182/blood-2015-12-683516.
    1. Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128(3):331–336. doi: 10.1182/blood-2016-02-702761.
    1. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006;125(4):733–747. doi: 10.1016/j.cell.2006.03.035.
    1. Krause G, Hassenruck F, Hallek M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Devel Ther. 2018;12:2577–2590. doi: 10.2147/DDDT.S142406.
    1. Cheson BD, O'Brien S, Ewer MS, Goncalves MD, Farooki A, Lenz G, Yu A, Fisher RI, Zinzani PL, Dreyling M. Optimal Management of Adverse Events from Copanlisib in the treatment of patients with non-Hodgkin lymphomas. Clin Lymphoma Myeloma Leuk. 2019;19(3):135–141. doi: 10.1016/j.clml.2018.11.021.

Source: PubMed

3
Abonnere